Abstract:
A method of detecting FN code synchronization for a DSSS signal comprising receiving a DSSS data signal of data frames comprised of I and Q symbols, at least a portion of each data frame comprising a unique word, demodulating the data signal into I and Q chip samples, filtering the I and Q chip samples and outputting the filtered I and Q chip samples to a chip stream controller which outputs the plurality of chip streams to a correlation matrix that correlates the plurality of chip streams with the chipped unique word and outputs a correlated data stream, A plurality of FFTs is run on the correlated output data stream and a processor searches for a maximum frequency bin power of each FF'T. A PN synchronization detector searches for a maximum frequency bin power among the plurality of FFT runs and determines whether PN synchronization is present.
Abstract:
Methods of dynamically modeling performance of a communications network that may include modeling a communications network using a processor by performing a link budget analysis (LBA) for a configuration of the communications network, receiving a plurality of layers of real-time information about the communications network, iteratively performing additional LBAs using one or more of the layers of real-time information from among the plurality of layers of real-time information, multi-dimensionally co-modeling a matrix comprising results of the iteratively performed additional LBAs, and determining one or more final communications network configuration parameters based on the multi- dimensionally co-modeled matrix.
Abstract:
A method of maintaining a data rate of a telecommunications link that involves, in a particular embodiment, modulating a carrier signal, encoding the carrier signal, and dynamically controlling a bandwidth of the carrier signal by changing a symbol rate of the carrier signal such that a data rate of the carrier signal remains substantially equal to a predetermined data rate when the carrier signal is transmitted to a remote receiver.
Abstract:
A method of reducing packet loss resulting from header compression during data transmission comprising of calculating, by a transmitter, the difference between one or more delta fields of each packet among a plurality of packets and a base frame of data wherein for at least a portion of the packets, the base frame is a packet other than a packet immediately preceding the packet for which the difference is calculated, encoding the difference and compressing the plurality of packets using the transmitter; transmitting, using the transmitter, the plurality of compressed packets and an uncompressed full-header packet through a communications channel to a receiver, receiving the plurality of compressed packets and the uncompressed full-header packet by the receiver, and decompressing, by the receiver, the plurality of compressed packets using the difference between the one or more delta fields of each packet among the plurality of compressed packets and the base frame.
Abstract:
A method for remotely and dynamically controlling adjacent satellite interference comprising monitoring one or more off-axis signals emitted by one or more remote transmitters; determining whether one or more of the off-axis signals is creating adjacent satellite interference (ASI), off axis emissions and inband interference that is higher than a predetermined level of acceptable interference, and transmitting a control signal to at least one of the one or more remote transmitters in response to the determination that the one or more off-axis signals is creating interference that is higher than the predetermined level of acceptable interference, the control signal initiating an adjustment to one or more transmission parameters of the one or more remote transmitters such that interference resulting from the one or more off-axis signals emitted by the one or more remote transmitters is reduced or eliminated.
Abstract:
A communication method for embedding a meta-carrier under an original carrier signal with reduced or minimal original carrier signal degradation, the method comprising transmitting an original carrier signal and transmitting a meta-carrier signal separate from the original carrier signal, wherein the meta-carrier signal contains information about an original carrier signal, is extractable under an interfered condition, and is transmitted such that the meta-carrier signal occupies at least a portion of a bandwidth of the original carrier signal.
Abstract:
A communication method for embedding a meta-carrier under an original carrier signal with reduced or minimal original carrier signal degradation, the method comprising transmitting an original carrier signal and transmitting a meta-carrier signal separate from the original carrier signal, wherein the meta-carrier signal contains information about an original carrier signal, is extractable under an interfered condition, and is transmitted such that the meta-carrier signal occupies at least a portion of a bandwidth of the original carrier signal.
Abstract:
A method of generating N th order product predistortion coefficients for use by a linearizer in a non-linear communications system comprising receiving an input signal by a processor, applying, by the processor, a frequency domain-based adaptation algorithm by measuring N th order products of an output signal of the system and iteratively adjusting a predistortion coefficient of a predistorter until the N th order product is substantially equal to a predetermined minimum value.
Abstract:
A method for identifying the presence of an electronic transmission comprising detecting, by a detecting device, the presence of a burst of electromagnetic energy that results from the presence of an original carrier signal and transmitting, by a transmitting device, a spread spectrum meta-carrier signal within a portion of a bandwidth of the original carrier signal, wherein the meta-carrier signal contains information about the original carrier signal and is transmitted such that the meta-carrier signal occupies at least a portion of a bandwidth of the original earner signal during the presence of the burst of electromagnetic energy.
Abstract:
A method of reducing adjacent satellite interference, the method comprising monitoring, by a processor, a power spectral density (PSD) of a signal transmitted by a remote transmitter, determining, by the processor, that the PSD of the signal transmitted by the remote transmitter is above a predetermined level, and reducing the PSD of the signal transmitted by the remote transmitter by adjusting at least one of a spread spectrum spreading factor, a power level, a modulation factor, and a forward error correction (FEC) rate using a modulator while maintaining a constant spectral allocation and center frequency of the signal.