Abstract:
A method of seamless antenna handover comprising transmitting at least one of a handover trigger packet and a handover synchronization packet (HSP) by a transmitter to a first and a second repeating relay, the first repeating relay configured to transmit a data signal to a first modem at a remote receiver and the second repeating relay configured to transmit the data signal to a second modem at the remote receiver, receiving, by the first and second modems at the remote receiver, the data signal and the at least one of the handover trigger packet and the HSP from the first and second repeating relays, respectively, and activating one of the first and second modems and deactivating the other of the first and second modems in response to receiving the at least one of the handover trigger packet and the HSP.
Abstract:
A method for remotely and dynamically controlling adjacent satellite interference comprising monitoring one or more off-axis signals emitted by one or more remote transmitters; determining whether one or more of the off-axis signals is creating adjacent satellite interference (ASI), off axis emissions and inband interference that is higher than a predetermined level of acceptable interference, and transmitting a control signal to at least one of the one or more remote transmitters in response to the determination that the one or more off-axis signals is creating interference that is higher than the predetermined level of acceptable interference, the control signal initiating an adjustment to one or more transmission parameters of the one or more remote transmitters such that interference resulting from the one or more off-axis signals emitted by the one or more remote transmitters is reduced or eliminated.
Abstract:
A communication method for embedding a meta-carrier under an original carrier signal with reduced or minimal original carrier signal degradation, the method comprising transmitting an original carrier signal and transmitting a meta-carrier signal separate from the original carrier signal, wherein the meta-carrier signal contains information about an original carrier signal, is extractable under an interfered condition, and is transmitted such that the meta-carrier signal occupies at least a portion of a bandwidth of the original carrier signal.
Abstract:
A method for identifying the presence of an electronic transmission comprising detecting, by a detecting device, the presence of a burst of electromagnetic energy that results from the presence of an original carrier signal and transmitting, by a transmitting device, a spread spectrum meta-carrier signal within a portion of a bandwidth of the original carrier signal, wherein the meta-carrier signal contains information about the original carrier signal and is transmitted such that the meta-carrier signal occupies at least a portion of a bandwidth of the original earner signal during the presence of the burst of electromagnetic energy.
Abstract:
A method of embedding and transmitting a meta-data message in an original burst carrier signal for message reassembly comprising spreading a meta-carrier signal using a Direct Sequence Spread Spectrum (DSSS) spreading code having a Pseudo-Random Noise (PRN) spreading code sequence, the meta-carrier signal comprising one or more bits of meta-data information about the original burst carrier signal, lowering a power spectral density of the meta- carrier signal using the PRN spreading code such that interference with the original signal is reduced, combining the original burst carrier and the meta-carrier signals using a modulator such that a composite burst carrier signal results wherein the meta-carrier signal occupies at least a portion of a bandwidth of the original carrier, and transmitting the composite burst carrier using a transmitter over a telecommunications channel in which only one burst carrier signal is expected to be present within a predetermined frequency bandwidth at a point in time.
Abstract:
A method for identifying the presence of an electronic transmission comprising detecting, by a detecting device, the presence of a burst of electromagnetic energy that results from the presence of an original carrier signal and transmitting, by a transmitting device, a spread spectrum meta-carrier signal within a portion of a bandwidth of the original carrier signal, wherein the meta-carrier signal contains information about the original carrier signal and is transmitted such that the meta-carrier signal occupies at least a portion of a bandwidth of the original earner signal during the presence of the burst of electromagnetic energy.
Abstract:
A method of embedding and transmitting a meta-data message in an original burst carrier signal for message reassembly comprising spreading a meta-carrier signal using a Direct Sequence Spread Spectrum (DSSS) spreading code having a Pseudo-Random Noise (PRN) spreading code sequence, the meta-carrier signal comprising one or more bits of meta-data information about the original burst carrier signal, lowering a power spectral density of the meta- carrier signal using the PRN spreading code such that interference with the original signal is reduced, combining the original burst carrier and the meta-carrier signals using a modulator such that a composite burst carrier signal results wherein the meta-carrier signal occupies at least a portion of a bandwidth of the original carrier, and transmitting the composite burst carrier using a transmitter over a telecommunications channel in which only one burst carrier signal is expected to be present within a predetermined frequency bandwidth at a point in time.
Abstract:
A method for remotely and dynamically controlling adjacent satellite interference comprising monitoring one or more off-axis signals emitted by one or more remote transmitters; determining whether one or more of the off-axis signals is creating adjacent satellite interference (ASI), off axis emissions and inband interference that is higher than a predetermined level of acceptable interference, and transmitting a control signal to at least one of the one or more remote transmitters in response to the determination that the one or more off-axis signals is creating interference that is higher than the predetermined level of acceptable interference, the control signal initiating an adjustment to one or more transmission parameters of the one or more remote transmitters such that interference resulting from the one or more off-axis signals emitted by the one or more remote transmitters is reduced or eliminated.
Abstract:
A communication method for embedding a meta-carrier under an original carrier signal with reduced or minimal original carrier signal degradation, the method comprising transmitting an original carrier signal and transmitting a meta-carrier signal separate from the original carrier signal, wherein the meta-carrier signal contains information about an original carrier signal, is extractable under an interfered condition, and is transmitted such that the meta-carrier signal occupies at least a portion of a bandwidth of the original carrier signal.