Abstract:
The invention relates to a process for preparing carbon and magnesium comprising composites, comprising: a) contacting a carbon material comprising pores of which at least 30%, based on the total number of pores, have a pore diameter in the range 0.1 to 10x10-9 m with a molten metallic magnesium or magnesium alloy to obtain a intermediate composite; and b) cooling the intermediate composite to obtain a carbon and magnesium comprising composite. The invention further provides a carbon and magnesium comprising composite obtainable by the process of the invention, the use of a carbon and magnesium comprising composite obtainable by the process and a hydrogen storage system.
Abstract:
A switchable mirror device comprising active layer (4) wherein said active layer changes its optical properties by adding/removal of hydrogen and comprises a Mg-transition metal layer, or an Y or rare earth based layer said active layer being provided on one side with a further protective layer (3) comprising a hydrogen and oxygen permeable and water impermeable layer, characterized in that said layer is liquid water impermeable and water vapor permeable and has hydrophobic surface properties. A pd catalyst layer (5) may be disposed between the active layer (4) and the protective layer (3).
Abstract:
A hydrogen permeable optical reflective layer (4) of a transition metal is deposited on transition metal (hydride) layer (3) which can switch from a black absorbing state. A hydrogen permeable catalytic layer (5) of a transition metal is deposited on top of the reflective layer (4). Ti and/or Pd may be used as transition metal(s) in all of the three layers (3,4,5). Co-sputtering may be used to deposit a transition metal (hydride) switching layer (3) with a maximum thickness of 100 nm on a substrate (2) which can be of any material. The thickness of the optical reflective layer (4), which is larger than the thickness of the switching layer (3), is more than 10 nm (but preferably 50-200 nm) so that there is (no or) little transmission. The thickness of the catalytic layer (5) is about 10 nm. If a detector (11) is included one can produce a hydrogen sensor. Alternatively, one can produce a temperature controlled solar energy converter (17) by including a fluid heater (18).
Abstract:
The present invention relates to a method for preparing caprolactone, comprising converting 5-hydroxymethyl-2-furfuraldehyde by hydrogenation into at least one intermediate compound selected from the group of 2,5-tetrahydrofuran-dimethanol, 1,6-hexanediol and 1,2,6-hexanetriol,and preparing caprolactone from said intermediate compound. Further, the invention relates to a method for preparing 1,2,6-hexanetriol comprising preparing 5-hydroxymethyl-2-furfaldehyde from a renewable source, converting 5- hydroxymethyl-2-furfaldehyde into 2,5-tetrahydrofuran-dimethanol and converting 2,5-tetrahydrofuran-dimethanol into 1,2,6-hexanetriol. Further, the invention relates to a method for preparing 1,6-hexanediol from 1,2,6- hexanetriol, wherein 1,2,6-hexanetriol is subjected to a ring closure reaction, thereby forming (tetrahydro-2H-pyran-2-yl)methanol, and the (tetrahydro-2H-pyran-2- yl)methanol is hydrogenated, thereby forming 1,6-hexane diol.
Abstract:
Disclosed is a process for the production of lower olefins by the conversion of a feed stream comprising carbon monoxide and hydrogen, and catalysts as used therein, such as a Fischer- Tropsch process. By virtue of the invention, lower olefins can be formed from synthesis gas, with high selectivity, and low production of methane. The catalysts used herein comprise an α-alumina support, and a catalytically active component that comprises iron-containing particles dispersed onto the support in at least 1 wt.%. The majority of the iron-containing particles is in direct contact with the α-alumina and is well-distributed thereon. Preferably, the iron-containing particles have an average particle size below 30 nm, and most preferably below 10 nm. The supported catalysts not only show a high selectivity, but also a high catalyst activity and chemical and mechanical stability.
Abstract:
The present invention relates to a method for preparing caprolactone, comprising converting 5-hydroxymethyl-2-furfuraldehyde by hydrogenation into at least one intermediate compound selected from the group of 2,5-tetrahydrofuran dimethanol, 1,6-hexanediol and 1,2,6-hexanetriol,and preparing caprolactone from said intermediate compound. Further, the invention relates to a method for preparing 1,2,6 hexanetriol comprising preparing 5-hydroxymethyl-2-furfaldehyde from a renewable source, converting 5-hydroxymethyl-2-furfaldehyde into 2,5-tetrahydrofuran dimethanol and converting 2,5-tetrahydrofuran dimethanol into 1,2,6 hexanetriol. Further, the invention relates to a method for preparing 1,6 hexanediol from 1,2,6-hexanetriol, wherein 1,2,6-hexanetriol is subjected to a ring closure reaction, thereby forming 2-hydropyranyl-methanol, and the 2-hydropyranyl-methanol is hydrogenated, thereby forming 1,6 hexane diol.
Abstract:
Disclosed is a process for the production of lower olefins by the conversion of a feed stream comprising carbon monoxide and hydrogen, and catalysts as used therein, such as a Fischer- Tropsch process. By virtue of the invention, lower olefins can be formed from synthesis gas, with high selectivity, and low production of methane. The catalysts used herein comprise a support that is chemically inert towards iron, and a catalytically active component that comprises iron-containing particles dispersed onto the inert support in at least 1 wt.%. Preferably, the iron-containing particles have an average particle size below 30 nm, and most preferably below 10 nm. The supported catalysts not only show a high selectivity, but also a high catalyst activity and chemical and mechanical stability.
Abstract:
A hydrogen permeable optical reflective layer (4) of a transition metal is deposited on transition metal (hydride) layer (3) which can switch from a black absorbing state. A hydrogen permeable catalytic layer (5) of a transition metal is deposited on top of the reflective layer (4). Ti and/or Pd may be used as transition metal(s) in all of the three layers (3,4,5). Co-sputtering may be used to deposit a transition metal (hydride) switching layer (3) with a maximum thickness of 100 nm on a substrate (2) which can be of any material. The thickness of the optical reflective layer (4), which is larger than the thickness of the switching layer (3), is more than 10 nm (but preferably 50-200 nm) so that there is (no or) little transmission. The thickness of the catalytic layer (5) is about 10 nm. If a detector (11) is included one can produce a hydrogen sensor. Alternatively, one can produce a temperature controlled solar energy converter (17) by including a fluid heater (18).