METHOD, SYSTEM AND COMPUTER READABLE MEDIUM FOR AN INTELLIGENT SEARCH WORKSTATION FOR COMPUTER ASSISTED INTERPRETATION OF MEDICAL IMAGES
    1.
    发明申请
    METHOD, SYSTEM AND COMPUTER READABLE MEDIUM FOR AN INTELLIGENT SEARCH WORKSTATION FOR COMPUTER ASSISTED INTERPRETATION OF MEDICAL IMAGES 审中-公开
    智能搜索工具台的计算机辅助解读医学图像的方法,系统和计算机可读介质

    公开(公告)号:WO0157777A3

    公开(公告)日:2002-08-22

    申请号:PCT/US0100680

    申请日:2001-02-05

    Applicant: ARCH DEV CORP

    Abstract: A method, system and computer readable medium for an intelligent search display into which an automated computerized image analysis has been incorporated. Upon viewing an unknown mammographic case, the display shows both the computer classification output as well as images of lesions with known diagnoses (e.g., malignant vs. benign) and similar computer-extracted features. The similarity index used in the search can be chosen by the radiologist to be based on a single feature, multiple features, or on the computer estimate of the likelihood of malignancy. Specifically the system includes the calculation of features of images in a known database, calculation of features of an unknown case, calculation of a similarity index, display of the known cases along the probability distribution curves at which the unknown case exists. Techniques include novel developments and implementations of computer-extracted features for similarity calculation and novel methods for the display of the unknown case amongst known cases with and without the computer-determined diagnoses.

    Abstract translation: 一种用于智能搜索显示器的方法,系统和计算机可读介质,已经并入了自动计算机图像分析。 在观察未知的乳房X线照相术的情况下,显示器显示计算机分类输出以及具有已知诊断(例如恶性与良性)的病变的图像以及类似的计算机提取的特征。 搜索中使用的相似性索引可以由放射科医师选择,以基于单个特征,多个特征或计算机估计恶性肿瘤的可能性。 具体地说,系统包括计算已知数据库中的图像的特征,计算未知情况的特征,计算相似性指数,沿着未知情况存在的概率分布曲线显示已知情况。 技术包括用于相似性计算的计算机提取特征的新颖开发和实现,以及用于在具有和不具有计算机确定的诊断的情况下在已知病例中显示未知病例的新颖方法。

    THE USE OF AMIFOSTINE FOR THE PROTECTION AGAINST TUMOR METASTASIS FORMATION
    3.
    发明申请
    THE USE OF AMIFOSTINE FOR THE PROTECTION AGAINST TUMOR METASTASIS FORMATION 审中-公开
    艾米斯汀用于保护肿瘤组织形成的应用

    公开(公告)号:WO0056299A3

    公开(公告)日:2001-01-18

    申请号:PCT/US0006653

    申请日:2000-03-14

    CPC classification number: A61K31/661 A61K31/66 A61K41/00 A61K2300/00

    Abstract: Methods and pharmaceuticals for inhibiting or preventing metastasis formation in animals, including humans, having primary tumors, through the administration of phosphorothioates including their thiol and disulfide metabolites are disclosed. These compounds stimulate angiostatin levels, inhibit matrix metalloproteinases (MMPs), and stimulate manganese superoxidase dismutase (MnSOD). Phosphorothioates, of which amifostine is an example, can be administered as a combination therapy with traditional cancer therapies, including chemotherapy, radiotherapy, surgery, immunotherapy, hormone therapy and gene-therapy. Inhibition or prevention of metastasis by phosphorothioates is independent of tumor type, including adenocarcinomas and sarcomas.

    Abstract translation: 公开了通过施用硫代磷酸酯包括它们的硫醇和二硫化物代谢物来抑制或预防具有原发性肿瘤的动物包括人在内的转移形成的方法和药物。 这些化合物刺激血管内皮抑素水平,抑制基质金属蛋白酶(MMPs),并刺激锰超氧化物歧化酶(MnSOD)。 以氨磷汀为例的硫代磷酸酯可以作为与传统癌症治疗(包括化学疗法,放射治疗,手术,免疫治疗,激素治疗和基因治疗)的联合治疗来施用。 通过硫代磷酸酯抑制或预防转移与肿瘤类型无关,包括腺癌和肉瘤。

    METHOD AND SYSTEM FOR THE COMPUTERIZED ANALYSIS OF BONE MASS AND STRUCTURE
    6.
    发明申请
    METHOD AND SYSTEM FOR THE COMPUTERIZED ANALYSIS OF BONE MASS AND STRUCTURE 审中-公开
    骨质量和结构计算分析的方法和系统

    公开(公告)号:WO0013133A9

    公开(公告)日:2000-06-22

    申请号:PCT/US9918825

    申请日:1999-08-27

    Applicant: ARCH DEV CORP

    CPC classification number: G06T7/0012

    Abstract: An automated method (Figure 1(a)), storage medium, and system (1000) for analyzing bone. Digitized image data corresponding to an image of the bone are obtained. Next, there is determined, based on the digital images, a measure of bone mineral density (BMD) and at least one of a measure of bone geometry, a Minkowski Dimension, and a trabecular orientation. The strength of the bone is estimated based upon the measure of BMD and at least one of the measure of bone geometry, the Minkowski Dimension, and the trabecular orientation. To improve bone texture analysis, the present invention also provides a novel automated method, storage medium, and system in which digital image data corresponding to an image of the bone is obtained, and a region of interest (ROI) is selected within the bone (Figure 11(b)). A fractal characteristic of the image data within the ROI using an artificial neural network is extracted. The strength of the bone is estimated based at least in part on the extracted fractal characteristic. To perform bone analysis with an improved measure of bone mineral density, the present invention also provides a novel automated method, storage medium, and system in which digital image data corresponding to an image of the bone is obtained. A measure of normalized bone density (BMD) corresponding to a volumetric bone mineral density of the bone is determined, and the strength of the bone is estimated based at least in part on the normalized BMD (Figure 10(b)).

    Abstract translation: 用于分析骨骼的自动化方法(图1(a)),存储介质和系统(1000)。 获得与骨骼的图像对应的数字化图像数据。 接下来,基于数字图像确定骨矿物质密度(BMD)的量度以及骨几何学,闵可夫斯基尺寸和小梁取向中的至少一个。 骨骼的强度基于BMD的测量以及骨几何,Minkowski尺寸和小梁取向中的至少一个来估计。 为了改善骨骼纹理分析,本发明还提供了一种新颖的自动化方法,存储介质和系统,其中获得与骨骼的图像相对应的数字图像数据,并且在骨骼内选择感兴趣区域(ROI) 图11(b))。 提取使用人工神经网络的ROI内的图像数据的分形特征。 骨骼的强度至少部分地基于所提取的分形特征来估计。 为了通过骨矿物质密度的改进测量进行骨分析,本发明还提供了一种新颖的自动化方法,存储介质和系统,其中获得了与骨骼图像相对应的数字图像数据。 确定对应于骨的体积骨矿物质密度的标准化骨密度(BMD)的量度,并且至少部分地基于归一化BMD来估计骨的强度(图10(b))。

    METHOD AND SYSTEM FOR THE COMPUTERIZED ASSESSMENT OF BREAST CANCER RISK
    8.
    发明申请
    METHOD AND SYSTEM FOR THE COMPUTERIZED ASSESSMENT OF BREAST CANCER RISK 审中-公开
    用于计算机癌症风险评估的方法和系统

    公开(公告)号:WO9963480A8

    公开(公告)日:2000-02-17

    申请号:PCT/US9911794

    申请日:1999-06-04

    Applicant: ARCH DEV CORP

    CPC classification number: G06T7/0012 G06K9/6277

    Abstract: A method, system and computer readable medium for the computerized assessment of breast cancer risk, wherein a digital image (1100) of a breast is obtained and at least one feature area extracted (1102) from a region of interest in the digital. The extracted features (1102) are compared with a predetermined model (1106) associating patterns of the extracted features with a risk estimate (1108). Preferred features to be extracted from the digital image include: 1) one or more features based on absolute values of gray levels of pixels in said region of interest; 2) one or more features based on gray-level histogram analysis of pixels in said region of interest; (3) one or more features based on Fourier analysis of pixels values in said region of interest; 4) one or more features based on a spatial relationship among gray levels of pixels within the region of interest.

    Abstract translation: 一种用于乳腺癌风险的计算机化评估的方法,系统和计算机可读介质,其中获得乳房的数字图像(1100)和从所述数字图像中的感兴趣区域提取(1102)的至少一个特征区域。 将提取的特征(1102)与将提取的特征的模式与风险估计(1108)相关联的预定模型(1106)进行比较。 要从数字图像提取的优选特征包括:1)基于所述感兴趣区域中的像素的灰度级的绝对值的一个或多个特征; 2)基于所述感兴趣区域中的像素的灰度直方图分析的一个或多个特征; (3)基于所述感兴趣区域中的像素值的傅里叶分析的一个或多个特征; 4)基于感兴趣区域内的像素的灰度级之间的空间关系的一个或多个特征。

    METHOD AND SYSTEM FOR THE AUTOMATED DELINEATION OF LUNG REGIONS AND COSTOPHRENIC ANGLES IN CHEST RADIOGRAPHS
    9.
    发明申请
    METHOD AND SYSTEM FOR THE AUTOMATED DELINEATION OF LUNG REGIONS AND COSTOPHRENIC ANGLES IN CHEST RADIOGRAPHS 审中-公开
    自动分类肺癌区域和成人角度的方法与系统

    公开(公告)号:WO9942031A9

    公开(公告)日:1999-11-04

    申请号:PCT/US9903287

    申请日:1999-02-23

    Applicant: ARCH DEV CORP

    Abstract: A method, system, and computer product for the automated segmentation of the lung fields and costophrenic angle (CP) regions in posteroanterior (PA) chest radiographs, wherein image segmentation based on gray-level threshold analysis (S3, 1003) is performed by applying an iterative global gray-level thresholding method (S5, 1005) to a chest image based on the features of a global gray-level histogram (S3, 1003). Features of the regions in a binary image constructed at each iteration are identified and analyzed to exclude regions external to the lung fields. The initial lung contours that result from this global process are used to facilitate a local gray-level thresholding method (S6, 1006). Individual regions-of-interest (ROIs) are placed along the initial contour. A procedure is implemented to determine the gray-level thresholds to be applied to the pixels within the individual ROIs. The result is a binary image, from which final contours are constructed.

    Abstract translation: 一种用于前后(PA)胸部X光照片中肺野和肋骨角度(CP)区域自动分割的方法,系统和计算机产品,其中基于灰度阈值分析的图像分割(S3,1003)通过应用 基于全局灰度直方图的特征,对胸部图像进行迭代全局灰度阈值化方法(S5,1005)(S3,1003)。 识别和分析在每个迭代构建的二进制图像中的区域的特征以排除肺部外部的区域。 由该全局过程产生的初始肺轮廓用于促进局部灰度阈值法(S6,1006)。 单个感兴趣区域(ROI)沿初始轮廓放置。 实施一个程序来确定要应用于各个ROI内的像素的灰度级阈值。 结果是二进制图像,从中构建最终轮廓。

    WAVELET SNAKE TECHNIQUE FOR DISCRIMINATION OF NODULES AND FALSE POSITIVES IN DIGITAL RADIOGRAPHS
    10.
    发明申请
    WAVELET SNAKE TECHNIQUE FOR DISCRIMINATION OF NODULES AND FALSE POSITIVES IN DIGITAL RADIOGRAPHS 审中-公开
    数字放射线中小波和伪波数的小波蛇图技术

    公开(公告)号:WO9905639A8

    公开(公告)日:1999-06-17

    申请号:PCT/US9815278

    申请日:1998-07-24

    Applicant: ARCH DEV CORP

    CPC classification number: G06K9/6206 G06T7/0012

    Abstract: A method and apparatus for discrimination of nodules and false positive in digital chest radiographs, using a wavelet snake technique (1802; 1804; 1806; 1808). The wavelet snake is a deformable contour designed to identify the boundary of a relatively round object (1900). The shape of the snake is determined by a set of wavelet coefficient in a certain range of scales. Portions of the boundary of a nodule are first extracted using a multiscale edge representation. The multiscale edge are then fitted (2000; 1814) by a gradient descent procedure which deforms the shape of a wavelet snake by changing its wavelet coefficients. The degree of overlap between the fitted snake and the multiscale edges is calculated and used as a fit quality indicator for discrimination of nodules and false detection (1816; 1818; 1820).

    Abstract translation: 一种使用小波蛇技术(1802; 1804; 1806; 1808)来鉴别数字胸部X光片中的结节和假阳性的方法和装置。 小波蛇是一种可变形的轮廓,用于识别相对圆形物体的边界(1900)。 蛇的形状由一定尺度范围内的一组小波系数决定。 首先使用多尺度边缘表示来提取结节边界的部分。 然后通过梯度下降程序拟合多尺度边(2000; 1814),其通过改变其小波系数来变形小波蛇的形状。 计算拟合蛇和多尺度边缘之间的重叠程度,并将其用作区分结节和错误检测的适合质量指标(1816; 1818; 1820)。

Patent Agency Ranking