Abstract:
Methods and apparatus for optimizing quality of streaming data transmitted between a first node and a second node over a network, the streaming data including one or more frame groups is disclosed. A processor-readable medium having embodied therein processor readably instructions for implementing a method for optimizing quality of streaming data transmitted between a first node and a second node over a network is also disclosed.
Abstract:
An interconnectivity framework, method, and system for communicating in a peer-to-peer network is disclosed. A peer of the interconnectivity framework includes a peer library for publishing, messaging and locating component blocks over the peer-to-peer network and a telespace framework for managing component blocks in response to a requirement of an application to be executed at the peer. The component blocks being obtained by the peer library enable execution of the application at the peer in accordance with the requirement. The requirement defines the type of application so that the appropriate component blocks can be obtained from the peer-to-peer network. A networker is further included to enable communication with specific grids of the peer-to-peer network and to enable the publishing, messaging, and locating of objects published by specific peers of a grid of the peer-to-peer network.
Abstract:
A method, system and architecture for operating a content distribution overlay network in conjunction with a peer-to-peer network is provided, The method includes receiving a request for content at a content node from a requesting node of the peer-to-peer network. Then, referring to an overlay network to identify the content node as a head node of the overlay network. The head node has capabilities to transcode the content. The method then identifies a lowest level child node of the head node that has capabilities to transcode the content for the requesting node. The lowest level child node is then assigned to transcode the content for presentation to the requesting node, and each parent in the overlay network is assigned to transcode the content for its child. The lowest level child node receives the content transcoded from its parent in a format of the lowest level child node, and the overlay network is independent of the peer-to-peer network. In accordance with the method, nodes of the overlay network are arranged according to capability, and the head node has a highest capability of the overlay network.
Abstract:
An overlay network uses flexible neighbor selection based on network address translation (NAT) to define routing between nodes. The NAT type is used as a flexible neighbor selection criteria, either alone or in conjunction with other criteria. A method of selecting a neighboring node for a first node in a distributed hash table network includes determining a desired key value for a node finger table entry and requesting a set of candidate neighboring nodes near this desired key value. The method determines a network address translation type of each of the set of candidate neighboring nodes and ranks the set of candidate neighboring nodes accordingly. The method selects one of the set of candidate neighboring nodes based on the ranking. The NAT types of candidate neighboring nodes are determined by sending probe messages or from data received from a central overlay network server.
Abstract:
Provided is a method and apparatus for virtualizing access to resources in a distributed peer-to-peer (P2P) network. Specifically, a resource locally managed by a peer in the P2P network can be published such that other peers can identify the peer managing the resource. Any peer requesting access to the resource of another peer establishes communication to the peer managing the resource. After establishing communication, a proxy of the peer managing the resource can establish a proxy interface. The proxy interface, operating on the peer requesting access, permits the peer requesting access to generate command and control data to control the resource. Thus, the peer requesting access believes that it manages the local resource, while in reality, the peer requesting access only has virtualized access to the resource.
Abstract:
Methods and apparatus for optimizing quality of streaming data transmitted between a first node and a second node over a network, the streaming data including one or more frame groups is disclosed. A processor-readable medium having embodied therein processor readably instructions for implementing a method for optimizing quality of streaming data transmitted between a first node and a second node over a network is also disclosed.
Abstract:
Broadcast messages are efficiently directed to nodes of an overlay network. Broadcast messages include an End ID parameter specifying the range of key values for nodes that should receive the broadcast message. Each node of an overlay network maintains a list of finger nodes and their respective key values. Upon receiving a broadcast message, a node assigns a finger node a new End ID value based upon the End ID value of the broadcast message or the key value of an adjacent finger node. The node compares a finger node's new End ID value with the finger node's key value to determine whether to forward the broadcast message to that finger node. A broadcast message forwarded to a finger node includes an End ID parameter equal to the new End ID value determined for the finger node. Nodes can aggregate response messages from its finger nodes.
Abstract:
Broadcast messages are efficiently directed to nodes of an overlay network. Broadcast messages include an End ID parameter specifying the range of key values for nodes that should receive the broadcast message. Each node of an overlay network maintains a list of finger nodes and their respective key values. Upon receiving a broadcast message, a node assigns a finger node a new End ID value based upon the End ID value of the broadcast message or the key value of an adjacent finger node. The node compares a finger node's new End ID value with the finger node's key value to determine whether to forward the broadcast message to that finger node. A broadcast message forwarded to a finger node includes an End ID parameter equal to the new End ID value determined for the finger node. Nodes can aggregate response messages from its finger nodes.
Abstract:
Cell processor task management in a cell processor having a main memory, one or more power processor units (PPU) and one or more synergistic processing units (SPU), each SPU having a processor and a local memory is described. An SPU task manager (STM) running on one or more of the SPUs reads one or more task definitions stored in the main memory into the local memory of a selected SPU. Based on information contained in the task definitions the SPU loads code and/or data related to the task definitions from the main memory into the local memory associated with the selected SPU. The selected SPU then performs one or more tasks using the code and/or data.
Abstract:
A method of dynamically balancing a load on a fully connected grid (FCG) in a peer-to-peer environment includes determining if a first number of peers connected in a first FCG is greater than a preselected limit. If the first number of peers connected to the first FCG is greater than the preselected limit, then partitioning the first FCG into two or more subdivided FCGs, wherein each of the subdivided FCGs includes at least one peer connection that was previously connected in the first FCG. A subdivided location identifier can also be published for each respective resource included in each peer connection. A system for dynamically balancing a load on a fully connected grid (FCG) in a peer-to-peer environment is also described.