Abstract:
Architectures and techniques for treating conditions of the eye, such as presbyopia, utilize sources of treatment energy, such as electromagnetic energy emitting devices, to implement non-corneal manipulations. According to these devices and methods, the sources of treatment energy are activated to direct energy onto parts of the eye, such as the conjunctiva and sclera, to treat presbyopia. The treatments can affect at least one property of the eye and enhance an accommodation of the eye.
Abstract:
A cutting device that uses electromagnetic energy to create a cutting effect on or within a target surface is disclosed. The cutting device includes an optic guide and three or more nozzles located on a body member. The nozzles direct a volume of particles of air and liquid away from the body member, and the volume of particles of air and liquid can facilitate one or more of a disruptive effect and a cooling effect on the target surface. Energy emitted from the optic guide can interact with the particles to impart disruptive forces onto or within a target surface.
Abstract:
A radiation emitting apparatus is disclosed that emits a substantially homogenous beam of radiation from an irregularly shaped output end. As described herein, a radiation emitting apparatus includes a bundled fiberguide coupled to an energy distribution tuner. The bundled fiber guide is coupled to the energy distribution tuner to receive a substantially uniform distribution of high power energy. The bundled fiber guide is configured to distribute the energy to emit a substantially uniform distribution of lower power energy toward a target surface, such as a body surface. The bundled fiber guide may include a plurality of fused optic fibers, a plurality of beam splitting mirror elements, or tapered waveguides.
Abstract:
A device includes a handle coupled with an activated textured surface that can be implemented using a repetitive movement mechanism and a treatment energy source, such as an electromagnetic radiation source. The handle may be used to provide detection, treatment and/or management of sundry conditions including, for example, tooth discoloration, tissue damage, periodontal disease, tumors, pain, halitosis, and bronchitis. The activated textured surface may include a surface topography including corrugations, bristles, protuberances, or pits, or other surfaces for facilitating agitation, cleaning or other surface treatments.
Abstract:
A laser device that includes a dual pulse-width laser pumping circuit (100)generates long and short laser pulses. The laser- pumping circuit employs a single power supply (105) with dual high voltage outputs (110, 130) that are selectable under control (165) of a user. The laser device conveniently generates long and short laser pulses or a mix of the two for performing specilized surgical procedures.
Abstract:
Tissue coverings customized with images of underlying tissue are disclosed. Wounds, unwanted features, blemishes and the like may be camouflaged or masked by the tissue coverings, which can include photographic images of a patient's underlying tissue.
Abstract:
A medical laser device (600) that generates a laser beam controllable with presets (695) as to pulse duration, pulse repetition rate, power, and energy per pulse. The device also provides presets with respect to water and air outputs. Parametric values for power, pulse duration, pulse repetition rate, and energy per pulse as well as for water and air settings maybe programmed by the end user and stored as presets.
Abstract:
An identification connector (25) is disclosed that provides a link (16) between a laser housing (20) and a laser handpiece (11). The connector (25) integrates a laser delivery guide with ancillary connections and provides information for verifying proper connection and protection against use of unauthorized delivery system.
Abstract:
A system and method are described for controlling acceptance of a fiber connector. A configurable adapter is employed for connecting fiber connectors to a laser housing. A specific version of the adapter permits connecting both general-purpose and specific-purpose fiber connectors to the laser housing. A less versatile configuration of the adapter permits connecting general-purpose fiber connectors to the laser housing, but rejects specific-purpose fiber connectors.
Abstract:
A method and apparatus are described for controlling temperature of a fluid used with electromagnetic energy in medical and dental laser procedures. Received fluid is passed through a heat exchanger, and heat is added to or removed from the fluid depending upon a desired effect, which may be influenced by a temperature setting. Temperature of output fluid is sensed, and heating or cooling is controlled in order to maintain output fluid temperature in a desired range. Ultraviolet radiation is used to sterilize the fluid.