Abstract:
Exemplary embodiments of apparatus, systems and methods can be provided for providing at least one electro-magnetic radiation to at least one sample. For example, a plurality of wave-guiding arrangements can be provided which are configured to (i) provide the electro-magnetic radiation(s), and (ii) at a point of emission of each of the wave guiding arrangements, cause a phase of each of the electro-magnetic radiation(s) to have a predetermined value. The exemplary apparatus can be part of a probe. Further the exemplary apparatus can include an interferometric arrangement provided in communication with the probe and/or be part of the probe.
Abstract:
Exemplary embodiments of apparatus, system and method can be provided to measure a flow of fluid within an anatomical structure. For example, it is possible to use at least one first probe arrangement structured to be insertable into a vessel and configured to direct at least one radiation to at least one portion of the anatomical structure. Further, it is possible to provide at least one second arrangement which configured to detect an interference between a first radiation provided from the fluid via the probe arrangement and second a second radiation provided from a reference path as a function of wavelength thereof. Further, at least one third arrangement can be provided which is configured to determine at least one characteristic of the fluid as a function of the interference.
Abstract:
Exemplary embodiments of apparatus, method and system for determining a position on or in a biological tissue can be provided. For example, using such exemplary embodiment, it is possible to control the focus of an optical imaging probe. In another exemplary embodiment, it is possible to implement a marking apparatus together with or into an optical imaging probe. According to one exemplary embodiment, it is possible (using one or more arrangements) to receive information associated with at least one image of at least one portion of the biological tissue obtained using an optical imaging technique. Further, it is possible to, based on the information, cause a visible change on or in at least location of the portion(s) using at least one electro-magnetic radiation.
Abstract:
Exemplary embodiments of apparatus, method and computer accessible medium can be provided which can facilitate a determination of at least one characteristic of a structure. For example, it is possible to use at least one first arrangement which can be structured to provide at least one first transmitted radiation along a first axis and at least one second transmitted radiation along a second axis. The first and second transmitted radiations can impact the structure and generate respective first and second returned radiation. The first and second axis can be provided at a predetermined angle with respect with one another which is greater than 0. Further, at least one second arrangement can be provided which can be configured to receive data associated with the first and second returned radiations, and determine at least one relative velocity between the structure and the first arrangement along the first and second axes.
Abstract:
Exemplary apparatus and process can be provided for determining at least one characteristic of an anatomical structure. For example, it is possible to generate an acoustic wave in the anatomical structure using an opto-accoustic arrangement It is then possible to detect the acoustic wave and determine whether at least one blood pool is present at or in the anatomical structure as a function of at least one property of the acoustic wave. Further, it is possible to forward at least one first electro-magnetic radiation to at least one tissue of the anatomical structure, detect at least one second electro-magnetic radiation provided from the at least one tissue based on a motion of or within the at least one tissue to generate detection data, and determine the at least one characteristic of the at least one portion based on the detection data.
Abstract:
An apparatus, method and computer-accessible medium for identifying characteristics of at least a portion of a blood vessel contained within a tissue can be provided. For example, it is possible to utilize a radiation source configured to provide a radiation to the tissue. In addition, a probe can be provided which may be adapted to receive the radiation returned from the tissue; Further, a system may be utilized which can be configured to process data relating to the tissue. The data can indicate whether the blood vessel is in a vicinity of an end portion of the probe.
Abstract:
Arrangements, apparatus and methods are provided according to exemplary embodiments of the present invention. In particular, at least one first electro-magnetic radiation may be received and at least one second electro-magnetic radiation within a solid angle may be forwarded to a sample. The second electro-magnetic radiation may be associated with the first electro-magnetic radiation. A plurality of third electro-magnetic radiations can be received from the sample which is associated with the second electro-magnetic radiation, and at least one portion of the third electro- magnetic radiation is provided outside a periphery of the solid angle. Signals associated with each of the third electro-magnetic radiations can be simultaneously detected, with the signals being associated with information for the sample at a plurality of depths thereof. The depths can be determined using at least one of the third electro-magnetic radiations without a need to utilize another one of the third electro-magnetic radiations.
Abstract:
Arrangements, apparatus, systems and systems are provided for obtaining data for at least one portion within at least one luminal or hollow sample. The arrangement, system or apparatus can be (insertable via at least one of a mouth or a nose of a patient. For example, a first optical arrangement can be configured to transceive at least one electromagnetic (e.g., visible) radiation to and from the portion. A second arrangement may be provided at least partially enclosing the first arrangement. Further, a third arrangement can be configured to be actuated so as to position the first arrangement at a predetermined location within the luminal or hollow sample. The first arrangement may be configured to compensate for at least one aberration (e.g., astigmatism) caused by the second arrangement and/or the third arrangement. The second arrangement can include at least one portion which enables a guiding arrangement to be inserted there through. Another arrangement can be provided which is configured to measure a pressure within the at least one portion. The data may include a position and/or an orientation of the first arrangement with respect to the luminal or hollow sample.
Abstract:
A system, process and software arrangement are provided to determining data associated with at least one structural change of tissue. In particular, a first optical coherence tomography ("OCT”) signal which contains first information regarding the tissue at a first stress level, and a second OCT signal which contains second information regarding the tissue at a second stress level are received. The first and second information are compared to produce comparison information. The data associated with the at least one structural change is determined as a function of the comparison information and further information associated with (i) at least one known characteristics of the tissue and/or (ii) characteristics of an OCT system. Further, at least one optical coherence tomography ("OCT”) signal which contains information regarding the tissue can be received, and the modulus of the tissue may be determined as a function of the received at least one OCT signal.
Abstract:
A confocal microscope lens arrangement is provided. The confocal microscope lens arrangement includes a lens assembly housing which has a lens assembly, and an exterior housing including a distal end and a proximal end. The exterior housing is configured to allow the lens assembly housing to be placed therein, and translated between the proximal end and the distal end of the exterior housing to focus the lens assembly. The exterior housing has an aperture formed through a distal end thereof. The arrangement also includes an immersion media filling the volume of area between the exterior housing and the lens assembly housing.