Abstract:
Systems and methods to determine locations for dual touch operations performed on a four-wire resistive touch screen. The systems and methods may include measuring signals from pairs of electrodes on each of a first and second resistive sheet of the resistive touch screen in two phases of operation. The systems and methods may further include determining touch screen segment resistances from the signal measurements. The systems and methods may determine locations corresponding to the dual touch operations from the resistances. The systems and methods may also determine locations from the signal measurements.
Abstract:
Systems and methods to determine locations for dual touch operations performed on a four-wire resistive touch screen. The systems and methods may include measuring signals from pairs of electrodes on each of a first and second resistive sheet of the resistive touch screen in two phases of operation. The systems and methods may further include determining touch screen segment resistances from the signal measurements. The systems and methods may determine locations corresponding to the dual touch operations from the resistances. The systems and methods may also determine locations from the signal measurements.
Abstract:
Embodiments of the present invention provide a motor-driven mechanical system with a detection system to measure properties of a back channel and derive oscillatory characteristics of the mechanical system. Uses of the detection system may include calculating the resonant frequency of the mechanical system and a threshold drive DTH required to move the mechanical system from the starting mechanical stop position. System manufacturers often do not know the resonant frequency and DTH of their mechanical systems precisely. Therefore, the calculation of the specific mechanical system's resonant frequency and DTH rather than depending on the manufacturer's expected values improves precision in the mechanical system use. The backchannel calculations may be used either to replace or to improve corresponding pre-programmed values.
Abstract:
Embodiments of the present invention provide improved accuracy of displacement control by using a multi-segment transformation of an actuator's non-linear response. The present invention may set intermediate points to effectively divide the actuator response into multiple segments. Each segment may be assigned a transform function that represents the actuator's response in that particular segment. The present invention may operate in two modes, a calibration mode and a normal operations mode. During calibration mode, the intermediate points and the segment transforms may be set. During normal operations mode, a drive signal may be generated according to the calibrated set values.
Abstract:
Embodiments of the present invention provide a motor-driven mechanical system with a detection system to measure properties of a back channel and derive oscillatory characteristics of the mechanical system. Uses of the detection system may include calculating the resonant frequency of the mechanical system and a threshold drive DTH required to move the mechanical system from the starting mechanical stop position. System manufacturers often do not know the resonant frequency and DTH of their mechanical systems precisely. Therefore, the calculation of the specific mechanical system's resonant frequency and DTH rather than depending on the manufacturer's expected values improves precision in the mechanical system use. The backchannel calculations may be used either to replace or to improve corresponding pre-programmed values.
Abstract:
The present invention provides a haptics control system that may include a driver to generate a continuous drive signal and to output the drive signal to a mechanical system on an electrical signal line, wherein the continuous drive signal causes the mechanical system to vibrate to produce a haptic effect. The haptics control system may further include a monitor, coupled to the electrical signal line, to capture a Back Electromotive Force (BEMF) signal generated by the mechanical system in the electrical signal line, to measure a BEMF signals attribute, and to transmit an adjustment signal to the driver based on the BEMF signals attribute. The driver is further configured to adjust the continuous drive signal according to the adjustment signal.
Abstract:
Embodiments of the present invention provide a motor-driven mechanical system with a detection system to measure properties of a back channel and derive oscillatory characteristics of the mechanical system. Uses of the detection system may include calculating the resonant frequency of the mechanical system and a threshold drive D TH required to move the mechanical system from the starting mechanical stop position. System manufacturers often do not know the resonant frequency and D TH of their mechanical systems precisely. Therefore, the calculation of the specific mechanical system's resonant frequency and D TH rather than depending on the manufacturer's expected values improves precision in the mechanical system use. The backchannel calculations may be used either to replace or to improve corresponding pre-programmed values.
Abstract:
Embodiments of the present invention provide a motor-driven mechanical system with a detection system to measure properties of a back channel and derive oscillatory characteristics of the mechanical system. Uses of the detection system may include calculating the resonant frequency of the mechanical system and a threshold drive DTH required to move the mechanical system from the starting mechanical stop position. System manufacturers often do not know the resonant frequency and DTH of their mechanical systems precisely. Therefore, the calculation of the specific mechanical system's resonant frequency and DTH rather than depending on the manufacturer's expected values improves precision in the mechanical system use. The backchannel calculations may be used either to replace or to improve corresponding pre-programmed values.
Abstract:
Techniques to control a capacitive touch screen that decrease processing time and increase noise rejection. The techniques may include injecting a plurality of excitation signals having unique spectral profiles onto conductors of the capacitive touch screen, sampling signals returned from the screen, and determining a location of touch. The techniques may further include injecting a plurality of excitation signals having unique spectral profiles onto adjacent or non-adjacent conductors of the capacitive touch screen. The techniques may further include injecting a plurality of excitation signals having unique spectral profiles onto conductors of the capacitive touch screen in unequal measures. The techniques may also include mapping frequency characteristics of noise present on the capacitive touch screen.
Abstract:
System for classifying touches input into a four-wire resistive touch screen. A voltage may be applied to electrodes in an active layer. A first set of four voltages may be measured by a voltage sensing circuit from electrodes in the active layer of a touch screen and a passive layer of a touch screen. The voltage may be switched from electrodes of the first layer to the electrodes of the second layer. A voltage sensing circuit may measure a second set of four voltages nearly simultaneously from electrodes in the active layer and the passive layer of a touch screen. Each set of measured voltages from the passive layer and or the acti may be processed. A rule set may be applied to the processing results. An indication of the type of touch that was applied to the touch screen may be provided and optionally including quantitative results.