Abstract:
The present invention relates to an assembly for rotatably mounting a display unit to a surface for movement between a first angular position adjacent the surface, a second angular position spaced from the surface and a range of third angular positions spaced from the second angular position. A first pintle secured to a first hinge mount is rotatably connected to a first hinge bracket. A first friction element secured to the first hinge bracket imparts a first resistive friction to the first pintle. A first detent mechanism secured to the first hinge bracket releasably secures the first pintle in the second angular position and imparts a second resistive friction to the first pintle when the first pintle is rotated through the range of third angular positions. The display unit rotates in a controlled manner from the first angular position to the second angular position due to a gravitational force.
Abstract:
A hinge for controlling a pivotal rate of movement. The hinge includes a first hinge part and a second hinge part that is pivotally mounted to the first hinge part. The first hinge part movable to and between open and closed positions relative to the second hinge part. A connector extends along an axis and the first and second hinge parts are pivotally mounted around the connector on the axis. A gap is defined between at least one of the first and second hinge parts and the connector. A damping fluid is located within the gap for controlling a relative rate of movement of the first and second hinge parts between the open and closed positions.
Abstract:
A hinge assembly includes a friction element for being secured to a first member. The friction element has a generally cylindrical wall including a generally longitudinally extending face and an internal surface. A generally cylindrical pintle for being secured to the second member is positioned rotatably within the friction element and includes an external surface, the external surface and internal surface being configured to provide an interference fit therebetween such that the friction element applies a generally radially directed compressive force to the pintle. A protuberance extends generally radially outwardly from the pintle and engages the generally longitudinally extending face when the pintle and friction element achieve a first predefined angular relationship. Movement beyond the first predefined angular relationship to a second predefined angular relationship causes the first diameter to increase, thereby decreasing the compressive forces to the pintle and imparting a counter-rotational force to the pintle and friction element.
Abstract:
A hinge connects a first member to a second member. The hinge includes a connector constructed of a polymeric material secured to the first member. The connector is constructed from a polymeric material and has a generally flat connector surface, and a first axis. A support is rotatably connected to the connector about the first axis. The support is constructed of a metallic material and has first and second opposing generally flat support surfaces. The first generally flat support surface is biased against the connector surface. A friction piece constructed of a polymeric material is rotatably connected to the support about the first axis and is rotatably fixed to the connector. The friction piece is biased against the second generally flat support surface. A torque element has a first end including an open portion and a closed portion. The torque element has an elongated second end extending from the closed portion. The second end of the torque element is fixedly connected to the support. A shaft extends from the second member and is rotatable about a second axis. The shaft has first and second ends, the first end of the shaft being fixedly connected to the second member. The shaft is rotatably located within the first end of the torque element. The hinge further includes a first biasing element positioned between the shaft and the support which biases the shaft to rotate about the second axis in a first direction.
Abstract:
A hinge adapted to pivotably connect a hinged member to a device housing is provided. The hinge is adapted to maintain the hinged member in one of an open position and a closed position relative to the device housing. The hinge includes a first hinge part having an axis and a cam follower. The first hinge part is adapted to be connected to one of the hinged member and the device housing. A second hinge part is provided which is aligned with and rotatable about the axis of the first hinge part. The second hinge part has a cam surface. The cam follower on the first hinge part contacts the cam surface. The cam surface has a first position and a second position. The second hinge part is adapted to be connected to the other of the hinged member and the device housing. A spring is provided which urges the cam follower against the cam surface with a spring force. The first and second hinge parts each have an axial bore defined therethrough. An axial load bearing connector extends through the axial bores to connect first and second hinge parts such that forces generated by the spring are reacted in the axial load bearing connector. The hinge is adapted to hold the hinged member in an open position relative to the device housing when the cam follower is in the first position.
Abstract:
A hinge for controlling a pivotal rate of movement. The hinge includes a first hinge part and a second hinge part that is pivotally mounted to the first hinge part. The first hinge part movable to and between open and closed positions relative to the second hinge part. A connector extends along an axis and the first and second hinge parts are pivotally mounted around the connector on the axis. A gap is defined between at least one of the first and second hinge parts and the connector. A damping fluid is located within the gap for controlling a relative rate of movement of the first and second hinge parts between the open and closed positions.
Abstract:
A hinge assembly for rotatably coupling a first member to a second member which includes a friction element (32a) for being secured to the first member. The friction element has an internal surface defining a generally cylindrical cavity. The friction element is geometrically configured to have substantially uniform strength. A generally cylindrical pintle (44a) for being secured to the second member includes an external surface and is positioned within the cavity with the external surface of the pintle being infacing frictional engagement with the internal surface of the friction element. As such, substantially uniform forces are created between the external surface of the pintle and the internal surface of the friction element to provide torque transfer and angular positional control of the pintle with respect to the friction element.
Abstract:
A hinge adapted to pivotably connect a hinged member to a device housing is provided. The hinge is adapted to maintain the hinged member in one of an open position and a closed position relative to the device housing. The hinge includes a first hinge part having an axis and a cam follower. The first hinge part is adapted to be connected to one of the hinged member and the device housing. A second hinge part is provided which is aligned with and rotatable about the axis of the first hinge part. The second hinge part has a cam surface. The cam follower on the first hinge part contacts the cam surface. The cam surface has a first position and a second position. The second hinge part is adapted to be connected to the other of the hinged member and the device housing. A spring is provided which urges the cam follower against the cam surface with a spring force. The first and second hinge parts each have an axial bore defined therethrough. An axial load bearing connector extends through the axial bores to connect first and second hinge parts such that forces generated by the spring are reacted in the axial load bearing connector. The hinge is adapted to hold the hinged member in an open position relative to the device housing when the cam follower is in the first position.
Abstract:
A hinge assembly for rotatably coupling a first member to a second member which includes a friction element for being secured to the first member. The friction element has an internal surface defining a generally cylindrical cavity. The friction element is geometrically configured to have substantially uniform strength. A generally cylindrical pintle for being secured to the second member includes an external surface and is positioned within the cavity with the external surface of the pintle being in facing frictional engagement with the internal surface of the friction element. As such, substantially uniform forces are created between the external surface of the pintle and the internal surface of the friction element to provide torque transfer and angular positional control of the pintle with respect to the friction element.
Abstract:
A hinge adapted to pivotably connect a hinged member to a device housing is provided. The hinge is adapted to maintain the hinged member in one of an open position and a closed position relative to the device housing. The hinge includes a first hinge part having an axis and a cam follower. The first hinge part is adapted to be connected to one of the hinged member and the device housing. A second hinge part is provided which is aligned with and rotatable about the axis of the first hinge part. The second hinge part has a cam surface. The cam follower on the first hinge part contacts the cam surface. The cam surface has a first position and a second position. The second hinge part is adapted to be connected to the other of the hinged member and the device housing. A spring is provided which urges the cam follower against the cam surface with a spring force. The first and second hinge parts each have an axial bore defined therethrough. An axial load bearing connector extends through the axial bores to connect first and second hinge parts such that forces generated by the spring are reacted in the axial load bearing connector. The hinge is adapted to hold the hinged member in an open position relative to the device housing when the cam follower is in the first position.