Abstract:
A micropillar and microwell chip and methods of studying cellular environments using micropillar and microwell chips is disclosed. The micropillar chip may include at least one micropillar with a pillar-microwell. The microwell chip may include at least one microwell with an upper and a lower microwell. A perfusion channel chip that may be integrated with a micropillar chip is also disclosed. The perfusion channel chip may include a channel, a pillar- insertion hole, a membrane cassette, and a reservoir well.
Abstract:
When forming ultra-conductive wire, multi-walled carbon nanotubes (MWCNTs) are dispersed and de-agglomerated in hot metal. The MWCNTs are dispersed in a precursor matrix via mixing and sintering to form precursor material, which is hot- extruded multiple rounds at a predetermined temperature to form a nano-composite material. The nano-composite material is inserted into a metal bar to form a nano- composite billet (306), which is subjected to multiple rounds of hot extrusion to form an ultra-conductive material. The ultra-conductive material is subjected to one or more rounds of hot wire drawing to form an ultra-conductive wire comprising a nano- composite filament.
Abstract:
An embodiment of the invention provides an ultrasensitive and selective system and method for detecting reactants of the chemical reaction catalyzed by an oxidoreductase, such as glucose and ethanol, at a concentration level down to zepto molar (10~ 21 M). In embodiments, the invention provides a cyclic voltammetry system comprising a working electrode, an oxidoreductase, and an electric field generator, wherein the oxidoreductase is immobilized on the working electrode; and the electric field generator generates an electric field that permeates at least a portion of the interface between the oxidoreductase and the working electrode. The ultrasensitivity of the system and method is believed to be caused by that the electrical field enhances quantum mechanical tunneling effect in the interface, and therefore facilitates the interfacial electron transfer between the oxidoreductase and the working electrode.
Abstract:
Methods and related compositions are disclosed for treating an array of myeloproliferative disorders and hematological malignancies. In particular, treatment methods and compositions for treating chronic myelogenous leukemia are disclosed. The methods and compositions utilize certain casein kinases, and specifically CK2α agents.
Abstract:
Methods for simultaneously surveying the status of a large number of DNA mutation markers are described. In addition, methods for simultaneously determining the methylation status at multiple sites of a collection of genes, in a single assay, are described.
Abstract:
Methods are provided for detecting a mutant polynucleotide in mixture of mutant polynucleotides, wild-type polynucleotides and unrelated polynucleotides. The method uses an extension primer complementary to a first target sequence in both the wild-type and mutant polynucleotides. The method also uses a probe complementary to a second target sequence in the wild-type polynucleotides but not in the mutant polynucleotides. Extension of the primers annealed to the first target sequence in mutant polynucleotides produces long extension products. Extention of the primers annealed to the first target sequence in wild-type polynucleotides is blocked by the probe annealed to the second target sequence. Short extension products or no extension products are produced. The extension products are isolated and used in a polymerase chain reaction (PCR). The PCR preferentially amplifies long extension products.
Abstract:
An embodiment of the invention provides an ultrasensitive and selective system and method for detecting reactants of the chemical/biochemical reaction catalyzed by an oxidoreductase, such as glucose and ethanol, at a concentration level down to zepto molar (10 -21 M). In embodiments, the invention provides an ampyometric immuno-sensing system comprising a working electrode, an oxidoreductase, and an external voltage generator, wherein the oxidoreductase is immobilized on the working electrode; and the voltage generator generates a voltage to induce an electric field that permeates at least a portion of the interface between the oxidoreductase and the working electrode. The ultrasensitivity of the system and method is believed to be caused by the electrical field, which enhances the quantum mechanical tunneling effect in the interface, and therefore facilitates the interfacial electron transfer between the oxidoreductase and the working electrode.
Abstract:
Inhibitors of casein kinase 2 are described that have been found to arrest uncontrolled cell proliferation, thereby suggesting their use in cancer treatment strategies. Specific applications include treating breast cancer, colon cancer, melanoma, chronic myelogenous leukemia, bladder cancer, renal cancer, and brain cancer. Various methods and compositions utilizing the inhibitors are described.
Abstract:
An electrical energy generating system converts wind power to electrical power with a wind deflecting structure that divides wind impinging on the structure into two separate accelerated flow paths. One or more turbines are positioned in proximity to the wind deflecting structure such that a portion of the vanes of the turbine is placed within one of the accelerated flow paths. An energy converter is coupled to the turbine that converts rotary motion of the turbine into electricity.
Abstract:
A wind harnessing system comprises a substantially grooved shell disposed about a rigid frame. The grooved shell can be constructed of lightweight shell panels connected to one another and to the frame. Alternatively, the grooved shell can be constructed of inflatable shell sections.