Abstract:
A 360° bi-directional rotary hinge formed of a fixed bracket, a rotary bracket, a limiter plate, a stop plate, a positioning plate, a spring ring and a fastening member for use in a folding electronic device is disclosed. Subject to matching between bottom blocks of the limiter plate and arched sliding grooves of the stop plate, movement of the stop plate is constrained by the fixed bracket, and therefore rotation of the rotary bracket of the 360° bi-directional rotary hinge is limited to a forward and backward 360° angle. Further, the stop plate carries an index block corresponding to a −180° angle indication hole and a 180° angle indication hole on the base member of the folding electronic device for giving an indication when the rotary bracket is rotated to +180° or −180° angle relative to the fixed bracket.
Abstract:
A 360° bi-directional rotary hinge formed of a fixed bracket, a rotary bracket, a limiter plate, a stop plate, a positioning plate, a spring ring and a fastening member for use in a folding electronic device is disclosed. Subject to matching between bottom blocks of the limiter plate and arched sliding grooves of the stop plate, movement of the stop plate is constrained by the fixed bracket, and therefore rotation of the rotary bracket of the 360° bi-directional rotary hinge is limited to a forward and backward 360° angle. Further, the stop plate carries an index block corresponding to a −180° angle indication hole and a 180° angle indication hole on the base member of the folding electronic device for giving an indication when the rotary bracket is rotated to +180° or −180° angle relative to the fixed bracket.
Abstract:
The invention provides a thermoelectric material, a method for fabricating the same, and a thermoelectric module employing the same. The thermoelectric material is composed of Zn4Sb(3-x)Rex, wherein 0
Abstract:
The invention provides a thermoelectric material, a method for fabricating the same, and a thermoelectric module employing the same. The thermoelectric material is composed of Zn4Sb(3-x)Rex, wherein 0
Abstract:
A one-body hollow precision cast metal golf club head is fabricated by casting metal about a head core to form a shell, and melting and flowing out the head core. The head core is made of low melting point alloys having a melting point lower than that of the metal used for casting the shell and is coated with an aqueous solution prior to the casting process of the shell. The aqueous solution is a composition including inorganic powders, binders and solvent. The ratio of components should be inorganic powder:binder:solvent=(40-80):(1-10):(10-59) based on weight.
Abstract:
The invention provides a metal thermal interface material (TIM) with through-holes in its body and/or zigzags or wave shapes on its border, which is suitable for use at thermal interfaces of a thermal conduction path from an integrated circuit die to its associated heat sink in a packaged microelectronic component. The invention also includes a thermal module and a packaged microelectronic component including the metal thermal interface material.
Abstract:
The invention provides a metal thermal interface material (TIM) with through-holes in its body and/or zigzags or wave shapes on its border, which is suitable for use at thermal interfaces of a thermal conduction path from an integrated circuit die to its associated heat sink in a packaged microelectronic component. The invention also includes a thermal module and a packaged microelectronic component including the metal thermal interface material.
Abstract:
A thermoelectric module includes a first and a second substrates, plural thermoelectric elements, plural first and second metal electrodes, plural first and second solder layers, and spacers. The thermoelectric elements are disposed between the first and second substrates, and each pair includes a P-type and an N-type thermoelectric elements. An N-type thermoelectric element is electrically connected to the other P-type thermoelectric element of the adjacent pair of thermoelectric element by the second metal electrode. The first metal electrodes and the lower end surfaces of the P/N type thermoelectric elements are jointed by the first solder layers. The second metal electrodes and the upper end surfaces of the P/N type thermoelectric elements are jointed by the second solder layers. The spacers are positioned at one of the first and second solder layers. The melting point of the spacer is higher than the liquidus temperatures of the first and second solder layers.