Abstract:
A cell culture article has substrate that is predominantly opaque and that provides a three-dimensional (e.g., irregular) surface, but incorporates an optically transparent, substantially regular (e.g., two-dimensional) surface to serve as a microscopic observation and imaging window for the 3D cell culture. In many embodiments, the 3D portion of the substrate occupies greater than 99% of the surface while the 2D portion occupies less than 1% of the surface so as not to substantially disrupt the general 3D culture environment.
Abstract:
A batch mixture including ceramic forming ingredients; a pore former mixture of a graphite and a starch; a hydroxypropyl methyl cellulose binder; and a liquid vehicle, as defined herein. Also disclosed is a method for producing a ceramic precursor article having enhanced throughputs in extrusion and drying as defined herein.
Abstract:
A batch mixture including ceramic forming ingredients; a pore former mixture of a graphite and a starch; a hydroxypropyl methyl cellulose binder; and a liquid vehicle, as defined herein. Also disclosed is a method for producing a ceramic precursor article having enhanced throughputs in extrusion and drying as defined herein.
Abstract:
A ceramic precursor batch composition comprising inorganic ceramic-forming ingredients, a hydrophobically modified cellulose ether binder having a molecular weight less than or equal to about 300,000 g/mole and an aqueous solvent is provided. The ceramic precursor batch composition has a ratio of binder to aqueous solvent of less than about 0.32. The ceramic precursor batch composition may be used to increase the rate of extrusion of the composition. A method for increasing a rate of extrusion of a ceramic precursor batch composition is also disclosed.
Abstract:
A method of minimizing localized heating of, or minimizing signal losses across a source of loss in, an optical fiber used in transmission of a high power optical signal at an operating wavelength. These methods include the steps of: providing an optical fiber which comprises a coating characterized by either (i) an absorbance of less than about 4.5 dB/cm at the operating wavelength or (ii) a refractive index lower than the refractive index of a cladding layer of the optical fiber by more than about 3x10-3 at the operating wavelength, or (iii) both (i) and (ii); and transmitting a optical signal having a power greater than about 250 mW through the optical fiber, wherein the coating, cladding layer, or combination thereof are selected to minimize localized heating of the optical fiber or to result in a signal loss across a source of loss that is less than about 250 mW at the operating wavelength.
Abstract:
Thermoplastic polymeric sheets are rendered microporous and remain substantially flat by contacting the sheet with a first fluid composition that contains or more solvents for the polymeric sheet to render the sheet microporous and then contacting the microporous sheet with a second fluid composition that is substantially free of solvents for the polymer and that contains a non-solvent that is miscible with the one or more solvents of the first composition. Contacting the microporous sheet with the second fluid composition preferably occurs prior to substantial evaporation of the first fluid compositions, or solvents thereof, from the microporous sheet.
Abstract:
Surfaces of thermoplastic articles are rendered microporous by contacting the surface with a composition that includes a solvent. The article has a birefringence of 0.0001 or greater and the composition has a solvent strength configured to swell but not dissolve the polymer.
Abstract:
The present invention relates to reticulated pore formers and ceramic articles including reticulated pore structures. The pore former of the present invention provides open pores having an interconnected generally three-dimensional structure and are useful in the manufacture of porous ceramic articles, such as honeycomb diesel particulate filters and catalyzed filters. The reticulated pore formers of the present invention provide controlled pore size and reticulated channel morphology in the finished ceramic articles. The pore size and the length of the pore channel may be controlled by using the desired foam structure and size. The pore formers may be mixed into a ceramic batch and extruded through a forming die resulting in a ceramic article that has semi-continuous reticulated channels throughout the entire body after firing to remove the pore former. The pore formers of the present invention are flexible and highly elastic, which inhibits rupture of the particle during the extrusion process. The use of reticulated pore formers enables the manufacture of highly permeable ceramic filters with controlled pore size distribution.
Abstract:
Thermoplastic polymeric sheets are rendered microporous and remain substantially flat by contacting the sheet with a first fluid composition that contains or more solvents for the polymeric sheet to render the sheet microporous and then contacting the microporous sheet with a second fluid composition that is substantially free of solvents for the polymer and that contains a non-solvent that is miscible with the one or more solvents of the first composition. Contacting the microporous sheet with the second fluid composition preferably occurs prior to substantial evaporation of the first fluid compositions, or solvents thereof, from the microporous sheet.
Abstract:
Surfaces of thermoplastic articles are rendered microporous by contacting the surface with a composition that includes a solvent. The article has a birefringence of 0.0001 or greater and the composition has a solvent strength configured to swell but not dissolve the polymer.