Abstract:
A mobile station determines it elevation based on the determined position of mobile station and a database of elevation data. The determined elevation of the mobile station may be used to vertically position a computer generated graphics in an image produced by the mobile station. In one embodiment, the elevation of the mobile station is determined by obtaining the elevation of multiple positions that define an area around the mobile station and using the elevation at the multiple positions to calculate the elevation at the current position.
Abstract:
A mobile station determines its orientation using an image of an object produced by the mobile station and a top view of that object obtained from an online server. The mobile station image is analyzed to identify lines on the object and to determine the direction of the lines with respect to the mobile station. The top view image, which may be a satellite image, is also analyzed to identify lines on the object that correspond to the lines identified in the mobile station image. The direction of the lines in the top view image are compared to the direction of lines in the mobile station image and based on their relative orientation the orientation of the mobile station may be determined. For example, the difference between the preliminary and corrected orientations may be stored as a calibration factor and used to correct subsequent orientation measurements from orientation sensors.
Abstract:
A master device images an object device and uses the image to identify the object device. The master device then automatically interfaces with the identified object device, for example, by pairing with the object device. The master device may receive broadcast data from the object device including information about the visual appearance of the object device and use the broadcast data in the identification of the object device. The master device may retrieve data related to the object device and display the related data, which may be display the data over the displayed image of the object device. The master device may provide an interface to control the object device or be used to pass data to the object device.
Abstract:
A method of providing magnetic deviation corresponding to positions in a wireless communication system includes receiving a request wirelessly for a magnetic deviation corresponding to a position of an access terminal, the request including the position of the access terminal; retrieving the magnetic deviation corresponding to the position of the access terminal from a repository; and transmitting wirelessly the magnetic deviation corresponding to the position of the access terminal to the access terminal.
Abstract:
A master device images an object device and uses the image to identify the object device. The master device then automatically interfaces with the identified object device, for example, by pairing with the object device. The master device may receive broadcast data from the object device including information about the visual appearance of the object device and use the broadcast data in the identification of the object device. The master device may retrieve data related to the object device and display the related data, which may be display the data over the displayed image of the object device. The master device may provide an interface to control the object device or be used to pass data to the object device.
Abstract:
In one embodiment, the present invention comprises a vocoder having at least one input and at least one output, an encoder comprising a filter having at least one input operably connected to the input of the vocoder and at least one output, a decoder comprising a synthesizer having at least one input operably connected to the at least one output of the encoder, and at least one output operably connected to the at least one output of the vocoder, wherein the encoder comprises a memory and the encoder is adapted to execute instructions stored in the memory comprising classifying speech segments and encoding speech segments, and the decoder comprises a memory and the decoder is adapted to execute instructions stored in the memory comprising time-warping a residual speech signal to an expanded or compressed version of the residual speech signal.
Abstract:
Reference free tracking of position by a mobile platform is performed using images of a planar surface. Tracking is performed optical flow techniques, such as pyramidal Lucas-Kanade optical flow with multiple levels of resolution, where displacement is determined with pixel accuracy at lower resolutions and at sub-pixel accuracy at full resolution, which improves computation time for real time performance. Periodic drift correction is performed by matching features between a current frame and a keyframe. The keyframe may be replaced with the drift corrected current image.
Abstract:
A mobile station determines it elevation based on the determined position of mobile station and a database of elevation data. The determined elevation of the mobile station may be used to vertically position a computer generated graphics in an image produced by the mobile station. In one embodiment, the elevation of the mobile station is determined by obtaining the elevation of multiple positions that define an area around the mobile station and using the elevation at the multiple positions to calculate the elevation at the current position.
Abstract:
A mobile station determines its orientation using an image of an object produced by the mobile station and a top view of that object obtained from an online server. The mobile station image is analyzed to identify lines on the object and to determine the direction of the lines with respect to the mobile station. The top view image, which may be a satellite image, is also analyzed to identify lines on the object that correspond to the lines identified in the mobile station image. The direction of the lines in the top view image are compared to the direction of lines in the mobile station image and based on their relative orientation the orientation of the mobile station may be determined. For example, the difference between the preliminary and corrected orientations may be stored as a calibration factor and used to correct subsequent orientation measurements from orientation sensors.
Abstract:
An apparatus of a wireless communication system includes: a transceiver configured to receive and transmit information wirelessly; and a processor communicatively coupled to the transceiver and configured to access an image captured by an access terminal of the wireless communication system, a position of the access terminal, and multiple keypoints and a geographical location of each respective keypoint, each geographical location being a location near the position of the access terminal; and determine a magnetic deviation corresponding to the position of the access terminal by calculating a compass bearing and a true bearing to a feature within the image using the position of the access terminal and the geographical location of a keypoint, from the multiple keypoints, determined as corresponding to the feature.