Abstract:
A pervaporation element includes a ceramic monolith having an array of parallel channels separated by porous channel walls extending along an axial length of the monolith, and a functional membrane coating a first plurality of the porous channel walls along the axial length of the monolith. The functional membrane functions to separate a fluid into a retentate portion and a permeate portion. The porous channel walls coated by the functional membrane define a plurality of discrete through segments, where each of the discrete through segments are separated from one another by a plurality of uncoated porous channel walls. Fluid entering the discrete through segments is separated into a retentate portion that exits in substantial portion through the discrete through segments and a permeate portion that exits the ceramic monolith radially outward through the uncoated porous channel walls and through a skin of the monolith.
Abstract:
A method and apparatus to treat a dried unfired article comprising a ceramic precursor composition substantially held together by a binder, to be resistant to binder soluble solvent based processing. The method includes depositing a fluid on the article surface, and polymerizing the deposited fluid to form a polymer thin layer on the surface. The fluid may be an aerosol, a vapor, a fog, a mist, a smoke, or combinations thereof. An apparatus to perform the method and an article resistant to binder soluble solvent based processing are also provided. The article can be an unfired honeycomb body that includes a dried composition of ceramic precursor substantially held together by a binder and a layer disposed on a surface of the unfired honeycomb body. The surface to be exposed in the green state to a binder soluble solvent and the layer protects the binder from solubilization by the solvent.
Abstract:
Cellular ceramic articles are manufactured from a green cellular ceramic body that includes a binder material and a plurality of channels. At least one of the channels is coated with a slurry that includes a green coating composition and a solvent to form a coating layer. The binder material is insoluble in the solvent.
Abstract:
A pervaporation element includes a ceramic monolith having an array of parallel channels separated by porous channel walls extending along an axial length of the monolith, and a functional membrane coating a first plurality of the porous channel walls along the axial length of the monolith. The functional membrane functions to separate a fluid into a retentate portion and a permeate portion. The porous channel walls coated by the functional membrane define a plurality of discrete through segments, where each of the discrete through segments are separated from one another by a plurality of uncoated porous channel walls. Fluid entering the discrete through segments is separated into a retentate portion that exits in substantial portion through the discrete through segments and a permeate portion that exits the ceramic monolith radially outward through the uncoated porous channel walls and through a skin of the monolith.
Abstract:
Described herein is a cordierite membrane coated on a monolith substrate formed from cordierite. The membrane coating is formed from cordierite particles which have been processed to have a median particle size diameter of between 1 and 3 microns with a narrow particle size distribution suitable for forming a cordierite membrane on a cordierite monolith substrate. After the cordierite membrane is formed on the cordierite monolith substrate, the cordierite membrane monolith has a pore size of less than 1 micron.