Abstract:
Passive antibody therapy as a tool for both prophylaxis against- and treatment of- highly pathogenic H5N1 influenza virus, providing immediate immunity is described. It is provided by an antibody specific to hemagglutinin capable of neutralizing influenza viruses and methods of making and using the same, the methods and compounds described herein may be used in diagnostic, prophylactic and therapeutic methods.
Abstract:
Described herein are antigen binding proteins that bind to pathogenic mycobacteria-derived Mannose-Capped Lipoarabinomannan (ManLAM) and methods and kits for using and making the antigen binding proteins. Also described herein are antigen binding proteins that bind to the alpha 1-2 linkage mannose caps of ManLAM, antigen binding proteins that bind to a mannose cap with up to three alpha 1-2 linked mannose residues, and antigen binding proteins that bind to LAM with a mannose sugar capping motif.
Abstract:
Compositions and methods for the treatment or prevention of Dengue virus infection in a vertebrate subject are provided. In particular, human neutralizing monoclonal antibodies to Dengue virus isolated from EBV immortalized B cells derived from patients who have recovered from Dengue infection are disclosed. Methods are provided for administering such antibodies to a vertebrate subject in an amount effective to reduce, eliminate, or prevent relapse from infection.
Abstract:
There is disclosed a three stage method for the preparation of ladder-like silicone polymers. The first stage comprises hydrolysis and polymerization of alkyltrialkoxylsilane-like monomers to give relatively low molecular weight prepolymers. The second stage comprises dehydrated condensation polymerization of the prepolymers to give high molecular weight polymers. The third stage comprises partial blocking of a proportion of the pendant Si-OH (silanol) groups with a pre-determined sub-stoichiometric amount of a blocking agent. Also disclosed are the prepolymers, polymers and partially blocked polymers so produced.
Abstract:
The invention provides a device for closing parachute packs, each of which has a plurality of flaps and a closing cord ( 36 ), the device ( 10 ) being characterised by a base ( 12 ) for bearing on a flap in one direction during the packing operation, and by a mechanism ( 18, 22 ) adapted to draw a pull cord ( 34 ) connectable to the closing cord ( 36 ) in substantially an opposite direction to allow the flaps to be secured relative to the closing cord ( 36 ) by a pin.
Abstract:
The present invention relates to an apparatus comprising a substrate having at least one assay station. The at least one assay station has at least a first assay station channel and at least a second assay station channel and the first and second assay station channels each separately being in communication with the at least one assay station. The apparatus has an arrangement of at least first and second multipurpose channels in communication with the first and second assay station channels, respectively. The first multipurpose channel and first assay station channel have internal surface characteristics conducive to conduction of a sample solution therethrough. There is at least one sample fluid inlet in communication with the at least first multipurpose channel, and at least one isolation-medium inlet in communication with the at least first and second multipurpose channels. The at least one second multipurpose channel has an internal surface portion non-conducive to conduction of said sample solution.
Abstract:
The present invention relates to diagnostic methods utilizing an apparatus comprising a substrate having at least one assay station. The at least one assay station has at least a first assay station channel and at least a second assay station channel and the first and second assay station channels each separately being in communication with the at least one assay station. The apparatus has an arrangement of at least first and second multi-purpose channels in communication with the first and second assay station channels, respectively. The first multipurpose channel and first assay station channel have internal surface characteristics conducive to conduction of a sample solution therethrough. There is at least one sample fluid inlet in communication with the at least first multi-purpose channel, and at least one isolation-medium inlet in communication with the at least first and second multi-purpose channels. The at least one second multi-purpose channel has an internal surface portion non-conducive to conduction of said sample solution.
Abstract:
An optical-limiter is disclosed herein. In an embodiment, the optical limiter comprises chemically functionalized graphene substantially spaced apart as single sheets in a substantially transparent liquid cell or solid thin film. A method of fabricating an optical response material is also disclosed.