Abstract:
Embodiments of the disclosure may provide an exemplary method for operating a compressor system, wherein the method may include cooling a process gas containing water vapor to a first temperature. The water vapor may form a condensate at the first temperature, and cooling the process gas may produce residual heat. At least a portion of the condensate is removed from the process gas, wherein any portion of the condensate that is not removed is a remaining condensate. The remaining condensate may be heated to a second temperature with the residual heat, wherein the remaining condensate in the process gas evaporates at the second temperature.
Abstract:
An impeller assembly is for a fluid machine, such as a compressor, and includes a first, main body and a second body. The main body includes a first section providing at least a substantial portion of either an impeller disc or an impeller cover and a second section spaced generally axially from the first section and providing a portion of the other one of the disc or the cover. A plurality of integrally formed blades extend between and connect the main body first and second sections such that the main body is generally of one piece construction. A plurality of flow channels are defined between the blades and a plurality of access openings extend into the flow channels. The second body provides a remainder of the disc or cover and is attachable to the main body to substantially form an impeller and to close all of the access openings.
Abstract:
Embodiments of the disclosure may provide an exemplary method for operating a compressor system, wherein the method may include cooling a process gas containing water vapor to a first temperature. The water vapor may form a condensate at the first temperature, and cooling the process gas may produce residual heat. At least a portion of the condensate is removed from the process gas, wherein any portion of the condensate that is not removed is a remaining condensate. The remaining condensate may be heated to a second temperature with the residual heat, wherein the remaining condensate in the process gas evaporates at the second temperature.
Abstract:
A seal assembly for use in a turbomachine is provided. The seal assembly has an annular division wall with outside and inside surfaces, a carrier ring disposed adjacent the inside surface of the annular division wall, and a sealing substrate metallurgically-bonded to an inner-most surface of the carrier ring. The sealing substrate is machined to form a seal surface that can be disposed proximate a rotor and maintained substantially parallel thereto during operation of the turbomachine.
Abstract:
A method and system for reducing corrosion in a turbomachine. The method may include providing a process gas to a condenser, wherein the process gas contains a condensate having a pH level that is acidic. The condenser may be configured to remove at least a portion of the condensate from the process gas. Any condensate that is not removed is a remaining condensate. The method may further include increasing the pH level of the remaining condensate to above about 4 by mixing the process gas and the remaining condensate with an amount of pH modifier to form a mixture, and directing the mixture to a compressor coupled to the condenser, wherein the compressor is configured to compress the mixture.
Abstract:
A method and system for reducing corrosion in a turbomachine. The method may include providing a process gas to a condenser, wherein the process gas contains a condensate having a pH level that is acidic. The condenser may be configured to remove at least a portion of the condensate from the process gas. Any condensate that is not removed is a remaining condensate. The method may further include increasing the pH level of the remaining condensate to above about 4 by mixing the process gas and the remaining condensate with an amount of pH modifier to form a mixture, and directing the mixture to a compressor coupled to the condenser, wherein the compressor is configured to compress the mixture.
Abstract:
A method and system for reducing corrosion in a turbomachine are provided. The method may include providing a process gas to a condenser, wherein the process gas contains a condensate having a pH level that is acidic. The condenser may be configured to remove at least a portion of the condensate from the process gas. Any condensate that is not removed is a remaining condensate. The method may further include increasing the pH level of the remaining condensate to above about 4 by mixing the process gas and the remaining condensate with an amount of pH modifier to form a mixture, and directing the mixture to a compressor coupled to the condenser, wherein the compressor is configured to compress the mixture.
Abstract:
A method and system for reducing corrosion in a turbomachine are provided. The method may include providing a process gas to a condenser, wherein the process gas contains a condensate having a pH level that is acidic. The condenser may be configured to remove at least a portion of the condensate from the process gas. Any condensate that is not removed is a remaining condensate. The method may further include increasing the pH level of the remaining condensate to above about 4 by mixing the process gas and the remaining condensate with an amount of pH modifier to form a mixture, and directing the mixture to a compressor coupled to the condenser, wherein the compressor is configured to compress the mixture.
Abstract:
A seal assembly for use in a turbomachine is provided. The seal assembly has an annular division wall with outside and inside surfaces, a carrier ring disposed adjacent the inside surface of the annular division wall, and a sealing substrate metallurgically-bonded to an inner-most surface of the carrier ring. The sealing substrate is machined to form a seal surface that can be disposed proximate a rotor and maintained substantially parallel thereto during operation of the turbomachine.
Abstract:
An apparatus and method for protecting an inner radial surface of a radial member of a turbomachine from corrosion are provided. The method may include shaping the inner radial surface of the radial member and a corresponding outer radial surface of a corrosion-resistant liner. The method may also include heating the radial member to increase a diameter of the inner radial surface of the radial member, and inserting at least a portion of the corrosion-resistant liner into the radial member. The method may further include attaching the corrosion-resistant liner to the inner radial surface of the radial member to thereby protect the inner radial surface of the radial member of the turbomachine from corrosion.