Abstract:
Exemplary method, system, and computer program product embodiments for efficient track destage in secondary storage in a more effective manner, are provided. In one embodiment, by way of example only, for temporal bits employed with sequential bits for controlling the timing for destaging the track in a primary storage, the temporal bits and sequential bits are transferred from the primary storage to the secondary storage. The temporal bits are allowed to age on the secondary storage. Additional system and computer program product embodiments are disclosed and provide related advantages.
Abstract:
In a maximum likelihood sequence detector for symbol sequences which were equalized in a PR4 equalizer, noise prediction means (35) are provided including infinite impulse response (IIR) filtering, which have noise-whitening capabilities and are imbedded into the maximum likelihood detection process. The resulting INPML detector (10) can be implemented in digital or analog circuit technoology. In addition, a DC-notch filter (44a) and a stochastic gradient procedure can be provided for DC offset compensation and for MR head or signal asymmetry compensation.
Abstract:
Methods and apparatus are provided for training an artificial neural network having a succession of neuron layers with interposed synaptic layers each having a respective set of N-bit fixed-point weights {w} for weighting signals propagated between its adjacent neuron layers, via an iterative cycle of signal propagation and weight-update calculation operations. Such a method includes, for each synaptic layer, storing a plurality p of the least-significant bits of each N-bit weight w in digital memory, and storing the next n-bit portion of each weight w in an analog multiply-accumulate unit comprising an array of digital memory elements. Each digital memory element comprises n binary memory cells for storing respective bits of the n-bit portion of a weight, where n≥1 and (p+n+m)=N where m≥0 corresponds to a defined number of most-significant zero bits in weights of the synaptic layer.