Abstract:
A method comprising determining a first temperature of an oil inside a compressor (1); determining a second temperature at a moveable part (5) of the compressor (1), wherein the second temperature at the moveable part (5) is determined at a stationary part (4) of the compressor (1) being in contact with the moveable part (5); and deriving whether the compressor (1) operates in a safe mode or in an unsafe mode based on an analysis of the determined first temperature and the determined second temperature at the moveable part (5).
Abstract:
A method of controlling injection into a compressor in a refrigeration cycle is described wherein the method is performed in a refrigeration cycle, which comprises at least a flash tank configured for receiving a refrigerant and separating liquid refrigerant and vapour refrigerant, and a compressor configured for compressing the refrigerant, wherein the compressor comprises a means for compressing, a suction port and an injection port, which is connected to the means for compressing for at least a time instance of the refrigeration cycle, wherein the flash tank is connected to the injection port of the compressor via an injection valve. The method comprises determining a pressure in the flash tank and controlling the injection valve based on the determined pressure in the flash tank.
Abstract:
The present disclosure provides an improved welding process for joining two components of which at least one comprises a brass alloy. In one exemplary embodiment, an intermediate part that includes a metal material different from a brass alloy may be arranged between the components such that it is in contact with the components in marginal regions. The intermediate part may then be heated during the welding process such that it enters into a connection having material continuity with the components in the marginal regions.
Abstract:
A compressor for compressing a refrigerant is described. The compressor comprises a case having at least one curved portion and at least one opening, wherein the opening is located in the at least one curved portion, an electrical terminal arranged within the at least one opening and fixed to the case, wherein the at least one opening is an elliptical opening. Also, an electrical terminal for use with a compressor is described.
Abstract:
A scroll plate for use in a scroll compressor is described. The scroll plate comprises a base plate having a first side and a second side, wherein the second side opposes the first side, and a spiral wrap formed on the first side of the base plate, wherein the base plate comprises one or more recesses and wherein an insulating material is located in at least one of the one or more recesses. Further, a scroll compressor having a corresponding scroll plate is described.
Abstract:
A method of controlling injection into a compressor in a refrigeration cycle is described. A refrigeration cycle may comprise at least an economizer heat exchanger, a heat rejection heat exchanger, a first expansion device, and a compressor. A discharge port of the compressor is connected to the heat rejection heat exchanger via a discharge line and an injection port of the compressor is connected to the means for compressing. The economizer heat exchanger comprises a first path having an input connected to the heat rejection heat exchanger and an output connected to the first expansion device, and a second path having an input connected to the heat rejection heat exchanger via an economizer valve and an output connected to the injection port of the compressor via an injection line. The economizer valve is regulated based on a superheat level of the refrigerant in the economizer heat exchanger.
Abstract:
The invention relates to an apparatus for determining the moisture content of a fluid flowing through a pipe line, having a housing with a sight glass arranged at a first side of the housing, a housing opening which allows an entry of the fluid into an inner housing space and a moisture indicator which is visible through the sight glass, wherein a dimension of the housing opening in at least one direction is smaller than a dimension of the sight glass in the same direction.
Abstract:
A refrigeration cycle may include a compressor and a flash tank. The flash tank is configured for receiving a refrigerant and separating liquid refrigerant and vapour refrigerant. The compressor is configured for compressing the refrigerant and includes a suction port and an injection port. The flash tank is connected to the injection port of the compressor via an injection valve. A method of controlling injection into the compressor includes determining a pressure in the flash tank and controlling the injection valve based on the determined pressure in the flash tank.
Abstract:
The invention relates to a refrigeration system comprising at least one display cabinet equipped with a refrigeration apparatus defining at least one refrigeration circuit and comprising: at least one compressor, a condenser, an expansion valve, an evaporator, a refrigerant circulating therethrough, a plurality of sensors measuring pressure and temperature of the refrigerant at various positions in the refrigeration circuit, and a control module configured to control operation at least of the compressor based on output from at least one of the sensors, wherein the control module is further configured to detect any faulty or non-optimal functioning of at least one of the compressor, the expansion valve and a sensor based on output from at least one of the sensors.
Abstract:
A system for use in a scroll compressor is described. The system comprises a crankshaft with a first end portion, wherein the crankshaft defines an axis of rotation, and slider block having a recess, wherein the first end portion of the crankshaft and the recess in the slider block are configured for connecting the slider block to the first end portion. The first end portion of the crankshaft comprises a first flat contact surface portion and the recess of the slider block comprises a second flat contact surface portion, the first and second contact surface portions facing each other when the first end portion is connected to the slider block. The system is characterized in that at least one of the flat contact surface portions comprises a slit beneath the at least one flat contact surface portion. Further, a corresponding slider block and a corresponding crankshaft are described.