Abstract:
A fire detection system (100) combines a CO2 gas detector (14) with a smoke detector (2). Logic circuitry (400) combines the outputs of both detectors to minimize false alarms and provide a rapid response time. In a preferred embodiment the need for periodic cleaning is reduced. In a further preferred embodiment, two alarms indicative of two different types of fires, for example flaming fires and nonflaming fires are available. A map (810) of flaming fire and smoke may be assembled by the system to guide the firefighters. In a yet another preferred embodiment, a tentative fire alarm indication (222, 233) disables a local air conditioning system thereby helping to isolate and control any existing fire. 00000
Abstract:
A fire detector that combines a (CO2) gas detector with a photoelectric smoke detector to minimize false alarms by logic means that can be integrated into a single chip that can have an ASIC section and a microprocessor section is disclosed. The (CO2) gas detector can be single or dual channel. The (CO2) gas detector and the photoelectric smoke detector can be separated or combined in a single device that uses a common light source. Also, the (CO2) gas detector and photoelectric smoke detector can be combined on a single substrate within a common housing. The smoke based fire detection criteria of the fire detector is dynamically adjusted in response to the measurements formed by the (CO2) gas detector.
Abstract:
A fire detection system (100) combines a CO2 gas detector (14) with a smoke detector (2). Logic circuitry (400) combines the outputs of both detectors to minimize false alarms and provide a rapid response time. In a preferred embodiment the need for periodic cleaning is reduced. In a further preferred embodiment, two alarms indicative of two different types of fires, for example flaming fires and nonflaming fires are available. A map (810) of flaming fire and smoke may be assembled by the system to guide the firefighters. In a yet another preferred embodiment, a tentative fire alarm indication (222, 233) disables a local air conditioning system thereby helping to isolate and control any existing fire.
Abstract:
A diffusion-type NDIR gas analyzer (100) with an improved response time due to convection flow created by a temperature gradient between gas located within a waveguide (2) and gas located within a diffusion pocket of space (8) created between the waveguide and a semi-permeable membrane (7) which surrounds the waveguide. The temperature gradient may be created by a thermally resistive radiation source (1) that is not thermally isolated from the waveguide. The semi-permeable membrane is made of a hydrophobic material and has a thickness sufficient to provide its own structural integrity. The semi-permeable membrane can have a pore size less than approximately 50 micrometers and be comprised of ultrahigh molecular weight polyethylene or other suitable materials.
Abstract:
A passive source infrared gas detector (42) uses an ambient temperature source and the space between the detector assembly and the source as the sample chamber. The gas detector (42) includes an infrared detector assembly for producing first, second, and third outputs, the first output being indicative of the radiation received at a first non-neutral spectral band which is absorbable by a preselected gas to be detected, the second output being indicative of the radiation received at a first neutral spectral band from the passive infrared source, and the third output being indicative of the radiation received at a second neutral spectral band from the passive infrared source. Signal processing means manipulate the three outputs to determine the concentration of the gas being monitored. Additional detectors can be added to the detector assembly to detect radiation at spectral bands characteristic of additional gases.
Abstract:
A fire detection system combines a CO2 gas detector with a smoke detector. Logic circuitry combines the outputs of both detectors to minimize false alarms and provide a rapid response time. In a preferred embodiment the need for periodic cleaning is reduced. In a further preferred embodiment, two alarms indicative of two different types of fires, for example flaming fires and nonflaming fires are available. A map of flaming fire and smoke may be assembled by the system to guide the firefighters. In a yet another preferred embodiment, a tentative fire alarm indication disables a local air conditioning system thereby helping to isolate and control any existing fire.
Abstract:
A power circuit for use with a resistive thermal radiation source in which the power delivered to the resistive thermal radiation source will remain constant within a preselected deviation over a fixed period of time as the source resistance of the source varies between an initial source resistance and a second source resistance at the operating temperature. The power circuit is designed to maintain constant power within a preselected deviation by using the resistance of the resistive thermal radiation source to calculate a preselected resistance used in the power circuit according to the following equation: wherein DELTA P=Psi-Ps; Psi=the initial power on the resistive thermal radiation source; Ps=the power on the resistive thermal radiation source when the source resistance is equal to the second source resistance; K1=RO/Rsi; R0=the preselected resistance; Rsi=the initial source resistance; K2=Rs/Rsi; and Rs=the second source resistance.
Abstract:
A diffusion-type NDIR gas analyzer (100) with an improved response time due to convection flow created by a temperature gradient between gas located within a waveguide (2) and gas located within a diffusion pocket of space (8) created between the waveguide and a semi-permeable membrane (7) which surrounds the waveguide. The temperature gradient may be created by a thermally resistive radiation source (1) that is not thermally isolated from the waveguide. The semi-permeable membrane is made of a hydrophobic material and has a thickness sufficient to provide its own structural integrity. The semi-permeable membrane can have a pore size less than approximately 50 micrometers and be comprised of ultrahigh molecular weight polyethylene or other suitable materials.
Abstract:
A diffusion-type NDIR gas analyzer (100) with an improved response time due to convection flow created by a temperature gradient between gas located within a waveguide (2) and gas located within a diffusion pocket of space (8) created between the waveguide and a semi-permeable membrane (7) which surrounds the waveguide. The temperature gradient may be created by a thermally resistive radiation source (1) that is not thermally isolated from the waveguide. The semi-permeable membrane is made of a hydrophobic material and has a thickness sufficient to provide its own structural integrity. The semi-permeable membrane can have a pore size less than approximately 50 micrometers and be comprised of ultrahigh molecular weight polyethylene or other suitable materials.