Abstract:
A method for etching a dielectric layer over a substrate and disposed below a mask is provided. The substrate is placed in a plasma processing chamber. An etchant gas comprising O2 and a sulfur component gas comprising at least one of H2S and a compound containing at least one carbon sulfur bond is provided into the plasma chamber. A plasma is formed from the etchant gas. Features are etched into the etch layer through the photoresist mask with the plasma from the etchant gas.
Abstract:
A workpiece is processed with a plasma in a vacuum plasma processing chamber by exciting the plasma at several frequencies such that the excitation of the plasma by the several frequencies simultaneously causes several different phenomena to occur in the plasma. The chamber includes central top and bottom electrodes and a peripheral top and/or bottom electrode arrangement that is either powered by RF or is connected to a reference potential by a filter arrangement that passes at least one of the plasma excitation ftequencies to the exclusion of other frequencies.
Abstract:
A plasma discharge electrode having a front surface with a central portion thereof including gas outlets discharging a process gas which forms a plasma and a peripheral portion substantially surrounding the gas outlets. The peripheral portion has at least one step for controlling a density of the plasma formed by the electrode. The electrode can be used as the grounded upper electrode in a parallel plate plasma processing apparatus such as a plasma etching apparatus. The geometric features of the step and of a corresponding edge ring on the lower electrode can be varied to achieve the desired etch rate profile across a wafer surface.
Abstract:
A process of etching openings in a dielectric layer includes supporting a semiconductor substrate in a plasma etch reactor, the substrate having a dielectric layer and a patterned photoresist and/or hardmask layer above the dielectric layer; supplying to the plasma etch reactor an etchant gas comprising (a) a fluorocarbon gas (CxFyHz, where x 1, y 1, and z 0), (b) a silane-containing gas, hydrogen or a hydrocarbon gas (CxHy, where x 1 and y 4), (c) an optional oxygen-containing gas, and (d) an optional inert gas, wherein the flow rate ratio of the silane-containing gas to fluorocarbon gas is less than or equal to 0.1, or the flow rate ratio of the hydrogen or hydrocarbon gas to fluorocarbon gas is less than or equal to 0.5; energizing the etchant gas into a plasma; and plasma etching openings in the dielectric layer with enhanced photoresist/hardmask to dielectric layer selectivity and/or minimal photoresist distortion or striation.
Abstract:
A method for etching a feature in an etch layer (208) through a photoresist mask (212) over a substrate (204) is provided. A substrate with an etch layer disposed below a photoresist mask is placed in a process chamber. The photoresist mask is conditioned, wherein the conditioning comprises providing a conditioning gas comprising a hydrogen containing gas with a flow rate and at least one of a fluorocarbon and a hydrofluorocarbon with a flow rate to the process chamber; and energizing the conditioning gas to form the conditioning plasma so as to harden the photoresist (214). The conditioning plasma is stopped. An etch plasma is provided to the process chamber, wherein the etch plasma is different than the conditioning plasma. A feature is etched in the etch layer (208) with the etch plasma.
Abstract:
A plasma discharge electrode having a front surface with a central portion thereof including gas outlets discharging a process gas which forms a plasma and a peripheral portion substantially surrounding the gas outlets. The peripheral portion has at least one step for controlling a density of the plasma formed by the electrode. The electrode can be used as the grounded upper electrode in a parallel plate plasma processing apparatus such as a plasma etching apparatus. The geometric features of the step and of a corresponding edge ring on the lower electrode can be varied to achieve the desired etch rate profile across a wafer surface.
Abstract:
A method for opening a carbon-based hardmask layer formed on an etch layer over a substrate is provided. The hardmask layer is disposed below a patterned mask. The substrate is placed in a plasma processing chamber. The hardmask layer is opened by flowing a hardmask opening gas including a COS component into the plasma chamber, forming a plasma from the hardmask opening gas, and stopping the flow of the hardmask opening gas. The hardmask layer may be made of amorphous carbon, or made of spun-on carbon, and the hardmask opening gas may further include O 2 .
Abstract:
A method for etching a feature in an etch layer through a mask over a substrate. The substrate is placed in a process chamber. An etch plasma is provided to the process chamber, where the etch plasma begins to etch. A feature is etched in the etch layer with the etch plasma. At least one etch plasma parameter is ramped during the etching of the feature to optimize plasma parameters with the changing etch depth and the feature is etched with the ramped plasma until the feature is etched to a feature depth.
Abstract:
A workpiece (18) is processed with a plasma (8) in a vacuum plasma processing chamber (10) by exciting the plasma at several frequencies (51, 52, 54, 56, 58), such that the excitation of the plasma by the several frequencies simultaneously causes several different phenomena to occur in the plasma. The chamber includes top central (14, 36, 36a) and bottom electrodes (13, 16) and a peripheral top (42) and/or bottom electrode (34) arrangement that is either powered by RF or is connected to a reference potential by a filter arrangement that passes at least one of the plasma excitation ftequencies to the exclusion of other frequencies. Controller 24 is employed to direct parameter control of various motors (M), valves (V), frequencies (58), power (59), temperature control means (25, 45) and set points (50).
Abstract:
A process of etching openings in a dielectric layer includes supporting a semiconductor substrate in a plasma etch reactor, the substrate having a dielectric layer and a patterned photoresist and/or hardmask layer above the dielectric layer; supplying to the plasma etch reactor an etchant gas comprising (a) a fluorocarbon gas (CxFyHz, where x 1, y 1, and z 0), (b) a silane-containing gas, hydrogen or a hydrocarbon gas (CxHy, where x 1 and y 4), (c) an optional oxygen-containing gas, and (d) an optional inert gas, wherein the flow rate ratio of the silane-containing gas to fluorocarbon gas is less than or equal to 0.1, or the flow rate ratio of the hydrogen or hydrocarbon gas to fluorocarbon gas is less than or equal to 0.5; energizing the etchant gas into a plasma; and plasma etching openings in the dielectric layer with enhanced photoresist/hardmask to dielectric layer selectivity and/or minimal photoresist distortion or striation.