Abstract:
Disclosed herein is a method of dispersing oil located on the surface of a body of water, that includes providing solid particles that include a matrix component and an effective amount of a dispersant component; and contacting the solid particles with the oil on the body of water in an amount sufficient to disperse at least a portion of the oil. Also disclosed is a dispersant for treating oil spills, comprising a solid particle that includes a dispersant component and a solid matrix component.
Abstract:
This invention relates generally to testing apparatus and methodology for measuring fluid dynamic properties of structures within fluid flows. One embodiment includes a fluid induced motion testing apparatus of the type which includes a test rig suitable for holding a test body in a fluid body. The apparatus may include any of an actuator suitable for producing a force upon the test body; a turbulence generator located in the fluid body up current from the test body suitable for generating a turbulent flow field with uniform turbulence intensity across the fluid body-test body interface, the turbulent flow field including dominate vortical structures, the axis of the vortical structures about parallel to the longitudinal axis of the test body; or a test body adjuster suitable for adjusting the test body relative to the fluid current in four or more increments, thereby enabling multiple headings of the test body to be tested against the current of the fluid body. This invention also relates to designing and constructing offshore structures and to producing hydrocarbon resources using offshore structures designed using the testing apparatus and methodology.
Abstract:
A method for hydrocarbon processing is provided. In one or more embodiments, the method includes splitting a hydrocarbon stream comprising natural gas and acid gas into a first stream and a second stream. Alternatively, the first stream and second stream may be provided from other sources. The first stream is processed to remove a portion of the acid gas therefrom, thereby producing a third stream comprising the acid gas removed from the first stream and a fourth stream comprising less than 100 ppm of sulfur-containing compounds. The second stream is combined with the third stream to provide a combined stream, which is compressed and reinjected into a subterranean reservoir.
Abstract:
The invention relates to numerical simulation of subsurface geological reservoirs. More specifically embodiments of the invention are related to computer modeling of the transmission of properties, for example the flow of fluids (e.g. hydrocarbon natural resources and water), within subsurface geological reservoirs. One embodiment of the invention includes a method of evaluating the transmission of a property within a subsurface geologic reservoir using a graph-theory single source shortest path algorithm.