Abstract:
A highly efficient optical device comprises two opposing active non-spherical optical surfaces defined by a two-dimensional representation that is symmetrically extended to provide a three-dimensional device. A focal area, spaced apart from the optical surface and non-contiguous therewith, is defined by the two opposing active optical surfaces. The active optical surfaces each have a continuous second derivative, and the optical surfaces are defined by a polynomial with an order of at least about twenty. The optical device may comprise a transparent dielectric core, and the optical surfaces may be formed on the core. A receiver may be situated at the focal area to provide a concentrator. An extended light source such as an LED may be situated at the focal area, to provide a collimator. Faceted embodiments can provide a low aspect optical device. In some embodiments a diffuser may be used to transform incident radiation into a predetermined shape.
Abstract:
A highly efficient optical device comprises two opposing active non-spherical optical surfaces defined by a two-dimensional representation that is symmetrically extended to provide a three-dimensional device. A focal area, spaced apart from the optical surface and non-contiguous therewith, is defined by the two opposing active optical surfaces. The active optical surfaces each have a continuous second derivative, and the optical surfaces are defined by a polynomial with an order of at least about twenty. The optical device may comprise a transparent dielectric core, and the optical surfaces may be formed on the core. A receiver may be situated at the focal area to provide a concentrator. An extended light source such as an LED may be situated at the focal area, to provide a collimator. Faceted embodiments can provide a low aspect optical device. In some embodiments a diffuser may be used to transform incident radiation into a predetermined shape.
Abstract:
A highly efficient optical device comprises two opposing active non-spherical optical surfaces defined by a two-dimensional representation that is symmetrically extended to provide a three-dimensional device. A focal area, spaced apart from the optical surface and non-contiguous therewith, is defined by the two opposing active optical surfaces. The active optical surfaces each have a continuous second derivative, and the optical surfaces are defined by a polynomial with an order of at least about twenty. The optical device may comprise a transparent dielectric core, and the optical surfaces may be formed on the core. A receiver may be situated at the focal area to provide a concentrator. An extended light source such as an LED may be situated at the focal area, to provide a collimator. Faceted embodiments can provide a low aspect optical device. In some embodiments a diffuser may be used to transform incident radiation into a predetermined shape.
Abstract:
A highly efficient optical device comprises two opposing active non-spherical optical surfaces defined by a two-dimensional representation that is symmetrically extended to provide a three-dimensional device. A focal area, spaced apart from the optical surface and non-contiguous therewith, is defined by the two opposing active optical surfaces. The active optical surfaces each have a continuous second derivative, and the optical surfaces are defined by a polynomial with an order of at least about twenty. The optical device may comprise a transparent dielectric core, and the optical surfaces may be formed on the core. A receiver may be situated at the focal area to provide a concentrator. An extended light source such as an LED may be situated at the focal area, to provide a collimator. Faceted embodiments can provide a low aspect optical device. In some embodiments a diffuser may be used to transform incident radiation into a predetermined shape.
Abstract:
A highly efficient optical device comprises two opposing active non-spherical optical surfaces defined by a two-dimensional representation that is symmetrically extended to provide a three-dimensional device. A focal area, spaced apart from the optical surface and non-contiguous therewith, is defined by the two opposing active optical surfaces. The active optical surfaces each have a continuous second derivative, and the optical surfaces are defined by a polynomial with an order of at least about twenty. The optical device may comprise a transparent dielectric core, and the optical surfaces may be formed on the core. A receiver may be situated at the focal area to provide a concentrator. An extended light source such as an LED may be situated at the focal area, to provide a collimator. Faceted embodiments can provide a low aspect optical device. In some embodiments a diffuser may be used to transform incident radiation into a predetermined shape.
Abstract:
An example of this light bulb has a light emitting element (which may be an LED array) mounted on a circuit board. The circuit board is mounted on one end of a heat- conducting frame. An Edison screw or other suitable connector, for attaching the light bulb electrically and mechanically to a receptacle, is mounted on the other end of the frame. A transparent phosphor-coated ball has a flat chord face optically bonded to said array. A light-permeable globular enclosure is mounted on the frame, surrounding the ball and both homogenizing the white light output of the bulb but also concealing the yellowing unlit appearance of the remote phosphor ball centrally located within it.
Abstract:
A light engine has a pillar with first and second ends; a circuit board on the first end of the pillar, a light source mounted on the circuit board encircling the pillar and facing towards the second end of the pillar, and a surface extending from the second end of the pillar, that surface and the exterior of the pillar between that surface and the circuit board being coated with a reflective remote phosphor that is excited by light from the light source. The light engine may be used in a light bulb, with a frosted globe enclosing the circuit board and mounted round the outer edge of the phosphor-coated surface, and an Edison screw or other standard base connected to the second end of the pillar.
Abstract:
A cylindrical light source comprises multiple LEDs mounted on either the exterior or interior surface of the cylinder, with heat-sink fins respectively on its interior or exterior. The LEDs emit radially, but their emission is redirected along the cylinder axis by individual ellipsoidal reflectors.
Abstract:
An embodiment of a collimating downlight has front-mounted blue LED chips facing upwards, having a heat sink on the back of the LED chips exposed in ambient air. The LED chips are mounted in a collimator that sends their blue light to a remote phosphor situated near the top of the downlight can. Surrounding the remote phosphor is a downward-facing reflector that forms a beam from its stimulated emission and reflected blue light. The phosphor thickness and composition can be adjusted to give a desired color temperature.
Abstract:
The present embodiments provide systems, backlights, films, apparatuses and methods of generating back lighting Some embodiments provide backlight (1) that include a cavity with at least one interior light source (Is) and diffusely reflecting wall of high reflectivity, a top surface (3) with multiple intermittently spaced holes (3h) allowing exit of light generated by the light sources, and external collimators (3d) extending from each of the holes (3h) such that the external collimators (3d) spatially expand and angularly narrow the light exiting the holes (3h).