Abstract:
A plurality of semiconductor optical devices (12a, 12b) has a common package (200) and common supporting structures (16, 18) and controls. The semiconductor optical devices are typically semiconductor lasers or photodiodes and are designed for operation independently of each other or in a coordinated way. In one embodiment, co- packaged semiconductor lasers may be used individually to drive each of the amplification stages of a multi-stage optical amplifier. The optical fibers (26a, 26b) connecting to the optical devices share a common port (20) and are aligned prior to engagement with the light output/input of the co-packaged semiconductor optical devices.
Abstract:
An optical component for gain-flattening multiplexed passband signals amplified with optical pump power, comprises a launch port optical waveguide operative to communicate multiplexed passband signals in a passband wavelength range and optical pump power in a different wavelength range; a thin film demux filter oriented to receive combined multiplexed passband signals and optical pump power from the launch port optical waveguide, and operative to pass the multiplexed passband signals and to reflect the optical pump power; a bypass port optical waveguide operative and oriented to receive and carry optical pump power reflected by the demux filter; a gain-flattening filter positioned to receive from the thin film demux filter and operative to pass the multiplexed passband signals with a desired attenuation profile for gain- flattening; and an output port optical waveguide oriented to receive and operative to carry at least multiplexed passband signals passed by the gain-flattening filter. Also disclosed are optical amplifiers comprising such GFF components. Also disclosed are optical filters comprising an optical substrate, a thin film demux filter on a first surface of the optical substrate, and a gain- flattening filter on an opposite surface of the optical substrate, wherein the demux filter is operative to pass multiplexed passband signals in a passband wavelength range and to reflect optical pump power in a different wavelength range, and the gain-flattening filter is operative to pass the multiplexed passband signals and to provide a desired attenuation profile to the multiplexed passband signals.
Abstract:
A variable gain optical amplifier comprises an EDFA for amplifying optical signals at different wavelengths and a pump driver (14) for optically pumping the EDFA to provide optical gain. An input detector (2) is provided for monitoring the power Pin of input signals to the EDFA, and an output detector (3) is provided for monitoring the power Pout of output signals from the EDFA. A gain control arrangement is provided for supplying a drive signal to the pump driver 14 to control the optical gain including a feed forward arrangement (20, 21, 22, 23) for supplying a feed forward signal dependent on the monitored input power Pin, and a feed back arrangement (5, 6, 7, 8, 9, 30) for supplying a feed back signal dependent on the monitored output power Pout. In order to ensure rapid gain control the feed back arrangement comprises an adaptive proportional-integral (PI or PID) controller (30) for controlling the optical gain at a required gain set point in accordance with proportional and integral control coefficients Kp and Ki corresponding to a required gain profile, at least one of which is dynamically variable in dependence on the monitored output power Pout, the output signal from the controller (30) and the feed forward signal being added in an adder (31) to produce the drive signal for the pump driver (14).
Abstract:
An optical amplifier system is provided which comprises first and second optical amplifiers (1, 2) for amplifying optical signals in a fibre optic communications link and a common pump (3) for optically pumping both the first amplifier (1) and the second amplifier (2) to effect such amplification. There is also provided an optical switch (6) for providing an optical path between the pump and the first amplifier in a first switching state and an optical path between the pump and the second amplifier in a second switching state to enable pumping of the first and second amplifiers by the pump sequentially. Advantageously this arrangement provides high accuracy to the outputs (4, 5) of the pump (3) and reduces low power pump noise.
Abstract:
A variable gain optical amplifier comprises an EDFA for amplifying optical signals at different wavelengths and a pump driver (14) for optically pumping the EDFA to provide optical gain. An input detector (2) is provided for monitoring the power Pin of input signals to the EDFA, and an output detector (3) is provided for monitoring the power Pout of output signals from the EDFA. A gain control arrangement is provided for supplying a drive signal to the pump driver 14 to control the optical gain including a feed forward arrangement (20, 21, 22, 23) for supplying a feed forward signal dependent on the monitored input power Pin, and a feed back arrangement (5, 6, 7, 8, 9, 30) for supplying a feed back signal dependent on the monitored output power Pout. In order to ensure rapid gain control the feed back arrangement comprises an adaptive proportional-integral (PI or PID) controller (30) for controlling the optical gain at a required gain set point in accordance with proportional and integral control coefficients Kp and Ki corresponding to a required gain profile, at least one of which is dynamically variable in dependence on the monitored output power Pout, the output signal from the controller (30) and the feed forward signal being added in an adder (31) to produce the drive signal for the pump driver (14).