Abstract:
Aspects of the present disclosure include methods, apparatuses, and computer readable media for generating a capability message indicating a first coherence capability of a first frequency, a second coherence capability of a second frequency, and an uplink (UL) transmission (TX) switching coherence capability, transmitting the capability message to a base station, receiving UL scheduling information for transmitting first UL data using the first frequency and second UL data using the second frequency, and transmitting at least one of the first UL data or the second UL data based on the UL scheduling information and based on at least one of the first coherence capability, the second coherence capability, or the UL TX switching coherence capability.
Abstract:
An electronic device for communication comprises a processor. The processor comprises a power scan module configured to receive an energy detection signal identifying detection of energy of a page signal or an inquiry signal. The power scan module is further configured to provide, upon receiving the energy detection signal, an instruction to perform a page scan or an inquiry scan.
Abstract:
A user equipment may be configured to limiting transmit power for frequency domain division for high power user equipment. In some aspects, the user equipment may determine a UE context is interference limited or noise limited based on comparing a measurement value to a threshold value, set a maximum transmit power based on the UE context, and transmit, during a time period associated with a downlink (DL) grant, an uplink (UL) transmission at the maximum transmit power.
Abstract:
Techniques for windowing a transmission are disclosed herein. In one aspect of the disclosure, the length of a window used for windowing may be configurable and determined for a transmission based on a configuration of the transmission. The configuration of the transmission may be determined based on one or more parameters such as a system bandwidth, a bandwidth assigned for the transmission, the location of the assigned bandwidth within the system bandwidth, a modulation type used for the transmission, etc. In another aspect of the disclosure, a preferred length for a window may be determined for each of a number of possible configurations of a transmission. Different possible window lengths may be evaluated for each possible configuration based on one or more performance metrics. For each configuration, a window length that can provide the best performance for that configuration may be selected as a preferred window length for that configuration.
Abstract:
Certain aspects of the present disclosure provide a dual antenna distributed radio frequency front end (RFFE). RFFE topologies described herein may provide lower insertion loss (IL), reduced emission mask, decreased power consumption, and/or lower noise figure (NF) compared to conventional RFFE topologies. One example apparatus for wireless communications generally includes first and second power amplifiers (PAs) for amplifying signals for transmission, a transmit antenna for transmitting the amplified signals, a receive antenna for receiving other signals to be processed in a receive path, and a first transmit filter configured to filter the amplified signals from the first PA before amplification by the second PA. For certain aspects, a divided inter-stage filter providing overlapping frequency bands may be utilized. For certain aspects, the RFFE may support frequency-division duplexing (FDD)/TDD (time-division duplexing) coexistence, including support for FDD/TDD MIMO (multiple input multiple output).
Abstract:
Certain aspects of the present disclosure provide a dual antenna distributed radio frequency front end (RFFE). RFFE topologies described herein may provide lower insertion loss (IL), reduced emission mask, decreased power consumption, and/or lower noise figure (NF) compared to conventional RFFE topologies. One example apparatus for wireless communications generally includes first and second power amplifiers (PAs) for amplifying signals for transmission, a transmit antenna for transmitting the amplified signals, a receive antenna for receiving other signals to be processed in a receive path, and a first transmit filter configured to filter the amplified signals from the first PA before amplification by the second PA. For certain aspects, a divided inter-stage filter providing overlapping frequency bands may be utilized. For certain aspects, the RFFE may support frequency-division duplexing (FDD)/TDD (time-division duplexing) coexistence, including support for FDD/TDD MIMO (multiple input multiple output).
Abstract:
Aspects of the present disclosure include methods, apparatuses, and computer readable media for generating a capability message indicating a first coherence capability of a first frequency, a second coherence capability of a second frequency, and an uplink (UL) transmission (TX) switching coherence capability, transmitting the capability message to a base station, receiving UL scheduling information for transmitting first UL data using the first frequency and second UL data using the second frequency, and transmitting the first UL data and the second UL data based on at least one of the first coherence capability, the second coherence capability, or the UL TX switching coherence capability.
Abstract:
A BT receiver RF front end receives RF energy in a sequence of BT scan windows. Throughout a scan window, the front end is tuned to one hop frequency. Before and after the window the front end is in a disabled state. A WLAN energy detector processes an output of the front end during the window and determines whether more than a predetermined amount of RF energy was received onto the front end during the window. A BT baseband processor attempts to demodulate the output of the front end. If the WLAN energy detector determines that the predetermined amount of RF energy was received and if a BT signal could not be demodulated, then a WLAN wake-up signal is asserted, thereby causing a WLAN transceiver to be powered up to receive WLAN signals. BT scan intervals are varied in duration to facilitate a BT scan window overlapping a WLAN beacon.
Abstract:
Systems and methods for transmission power management for a mobile device supporting simultaneous transmission on multiple air interfaces are disclosed. In one embodiment, the method comprises determining a transmission power level for each air interface, comparing the transmission power levels to a threshold power level, and adjusting at least one of the transmission power levels based on said comparison.
Abstract:
An electronic device for communication comprises a processor. The processor comprises a power scan module configured to receive an energy detection signal identifying detection of energy of a page signal or an inquiry signal. The power scan module is further configured to provide, upon receiving the energy detection signal, an instruction to perform a page scan or an inquiry scan.