Abstract:
Systems, methods, and devices for communicating a compressed beacon are described herein. In some aspects, a method of communicating in a wireless network includes transmitting, at an access point, a full beacon at a first multiple of a beacon interval. The method further includes transmitting a compressed beacon at each beacon interval that is not the first multiple of the beacon interval. Another method of communicating in a wireless network includes receiving, at a wireless device, a full beacon at a first multiple of a beacon interval. The method further includes receiving a compressed beacon at a beacon interval that is not the first multiple of the beacon interval.
Abstract:
Circuits, methods, and apparatus that provide high-throughput control fields that, among other functions, provide efficient TXOP handoffs in wireless networks. A handoff may be made by setting one or more bits in a field in a QoS frame, such as the HT control or other appropriate field.. Various conditions may be placed on a handoff by a granting station. For example, conditions specifying where a station receiving a TXOP handoff may send data, what the receiving station may do with any remaining TXOP, or what types of data may be transmitted by the receiving station may be imposed. These various conditions may be combined or omitted in any logic combination.
Abstract:
A method, apparatus and computer readable medium for an RTS/CTS system that utilizes a plurality of channels for data transfer, includes sending, by a first device, an RTS frame over the plurality of channels; receiving, by a second device, the RTS frame and outputting a CTS frame to the first device based on receipt of the RTS frame, the CTS frame being output over at least one of the plurality of channels; setting, by each device within a network that receives the RTS frame, a network allocation vector (NAV) to a time duration that is based in part on information included in the RTS frame; and transmitting, by the first device, data to the second device within the time duration set by the NAV using the at least one of the plurality of channels.
Abstract:
Systems, methods, and devices for communicating a compressed beacon are described herein. In some aspects, a method of communicating in a wireless network includes generating a compressed beacon. The compressed beacon includes a next full beacon time indication (NFBTI). The method further includes transmitting, at an access point, the compressed beacon.
Abstract:
Systems, methods, and devices for communicating a compressed beacon are described herein. In some aspects, a method of communicating in a wireless network includes creating a shortened network identifier having a first length from a full network identifier having a second length. The first length is shorter than the second length. The method further includes generating a compressed beacon including the shortened network identifier. The method further includes transmitting, at an access point, the compressed beacon.
Abstract:
Systems, methods, and devices for communicating a compressed beacon are described herein. In some aspects, a method of communicating in a wireless network includes creating a shortened network identifier having a first length from a full network identifier having a second length. The first length is shorter than the second length. The method further includes generating a compressed beacon including the shortened network identifier. The method further includes transmitting, at an access point, the compressed beacon.
Abstract:
In a wireless network according to embodiments of the present invention, fast control messaging frames are used to signal control information. A fast control messaging ("FCM") frame includes MAC layer control bits in a PLCP header, obviating the need for a PSDU. These frames can be used in 802.11n wireless networks as well as in other suitable 802.11x networks as well as non 802.11x networks to exchange control information while significantly reducing network overhead. In some embodiments, some information that might have been conveyed to a receiver's MAC layer in a PSDU is conveyed by including that information is a PLCP header and having logic within the receiver's PHY layer processing to process that information and convey that information up to the receiver's MAC layer in a simulated PSDU or other method. The indicator of an FCM frame can be a bit in a PLCP header, a modification of a CRC field of the PLCP header, or other indicator. The medication of the CRC field of the PLCP header can be an inversion of the CRC field, a translation of the CRC field by a constant value, or both, or some other variation.
Abstract:
Systems and methodologies are described that facilitate enhanced aggregation of management frames in a wireless communication system. Various aspects described herein provide for the encapsulation of management frames into respective data frames, thereby allowing management frames to be aggregated with data frames. Upon aggregation of an encapsulated management frame with data frames, the aggregated frames can be transmitted to one or more stations using a block acknowledgement scheme. Further, information contained in a management frame can be encrypted prior to transmission. Upon transmission of an aggregated frame, indications can be provided to a receiving station to indicate the presence of an encapsulated management frame and/or encrypted management information within the aggregated frame. Based on these indications, the receiving station can extract and/or decrypt the management information from the aggregated frame.
Abstract:
Circuits, methods, and apparatus that reduce overhead and channel bandwidth required for data reception acknowledgment. One such system uses an enhanced block acknowledgment that acknowledges frames received for different data streams. Another system sends an acknowledgment after the occurrence of a triggering event, such as the end of a duration, the reception of a number of frames, or the reception of a frame having a specific sequence number. Another removes the need for acknowledgment frames by including an acknowledgment field in a transmitted data frame. These block acknowledgments and acknowledgment fields may include an acknowledgement of frames received for each data stream having different traffic identifications, they may be for all received frames or for a specific class or groups of classes of traffic, for specific user priorities, or for other subgroups of received frames, and more that one acknowledgment may be included.
Abstract:
In a wireless network according to embodiments of the present invention, fast control messaging frames are used to signal control information. A fast control messaging ("FCM") frame includes MAC layer control bits in a PLCP header, obviating the need for a PSDU. These frames can be used in 802.11n wireless networks as well as in other suitable 802.11x networks as well as non 802.11x networks to exchange control information while significantly reducing network overhead. In some embodiments, some information that might have been conveyed to a receiver's MAC layer in a PSDU is conveyed by including that information is a PLCP header and having logic within the receiver's PHY layer processing to process that information and convey that information up to the receiver's MAC layer in a simulated PSDU or other method. The indicator of an FCM frame can be a bit in a PLCP header, a modification of a CRC field of the PLCP header, or other indicator. The medication of the CRC field of the PLCP header can be an inversion of the CRC field, a translation of the CRC field by a constant value, or both, or some other variation.