Abstract:
An adjustable self aligned low capacitance integrated circuit air gap structure comprises a first interconnect (64a) adjacent a second interconnect (64b) on an interconnect level, spacers (60b, 60c) formed along adjacent sides of the first and second interconnects, and an air gap (68) formed between the first and second interconnects. The air gap extends above an upper surface (74a, 74b) of at least one of the first and second interconnects and below a lower surface (76a, 76b) of at least one of the first and second interconnects, and the distance between the spacers defines the width of the air gap. The air gap is self-aligned to the adjacent sides of the first and second interconnects.
Abstract:
Methods for forming a dual damascene dielectric structure in a porous ultra-low-k (ULK) dielectric material by using gas-cluster ion-beam processing are disclosed. These methods minimize hard-mask layers during dual damascene ULK processing and eliminate hard-masks in the final ULK dual damascene structure. Methods for gas-cluster ion-beam etching, densification, pore sealing and ashing are described that allow simultaneous removal of material and densification of the ULK interfaces. A novel ULK dual damascene structure is disclosed with densified interfaces and no hard-masks.
Abstract:
An adjustable self aligned low capacitance integrated circuit air gap structure comprises a first interconnect (64a) adjacent a second interconnect (64b) on an interconnect level, spacers (60b, 60c) formed along adjacent sides of the first and second interconnects, and an air gap (68) formed between the first and second interconnects. The air gap extends above an upper surface (74a, 74b) of at least one of the first and second interconnects and below a lower surface (76a, 76b) of at least one of the first and second interconnects, and the distance between the spacers defines the width of the air gap. The air gap is self-aligned to the adjacent sides of the first and second interconnects.
Abstract:
Capping layer (614) or layers on a surface of a copper interconnect wiring layer (602) for use in interconnect structures for integrated circuits and methods of forming improved integration interconnection structures for integrated circuits by the application of gas-cluster ion-beam processing. Reduced copper diffusion and improved electromigration lifetime result and the use of selective metal capping techniques and their attendant yield problems are avoided.
Abstract:
Methods for forming a dual damascene dielectric structure in a porous ultra-low-k (ULK) dielectric material (504) by using gas- cluster ion-beam processing are disclosed. These methods minimize hard-mask layers during dual damascene ULK processing and eliminate hard-masks in the final ULK dual damascene structure. Methods for gas-cluster ion-beam etching, densification, pore sealing and ashing are described that allow simultaneous removal of material and densification of the ULK interfaces. A novel UL dual damascene structure (512) is disclosed with densified interfaces and no hard-masks.
Abstract:
Capping layer or layers on a surface of a copper interconnect wiring layer for use in interconnect structures for integrated circuits and methods of forming improved integration interconnection structures for integrated circuits by the application of gas-cluster ion-beam processing. Reduced copper diffusion and improved electromigration lifetime result and the use of selective metal capping techniques and their attendant yield problems are avoided.