Abstract:
A networked system for managing a physical intrusion detection/alarm includes a network of end nodes, e.g., sensor nodes including one or more constrained sensor nodes for sensing physical conditions, and a gateway to provide network connections for the constrained sensor nodes. The system also includes a range extender for connecting the one or more constrained sensor nodes to the gateway, with the range extender including first and second radios and corresponding processors to wirelessly communicate with the gateway and constrained nodes.
Abstract:
A networked system for managing a physical intrusion detection/alarm includes a network of end nodes, e.g., sensor nodes including one or more constrained sensor nodes for sensing physical conditions, and a gateway to provide network connections for the constrained sensor nodes. The system also includes a range extender for connecting the one or more constrained sensor nodes to the gateway, with the range extender including first and second radios and corresponding processors to wirelessly communicate with the gateway and constrained nodes.
Abstract:
A networked system for managing a physical intrusion detection/alarm includes a network of end nodes, e.g., sensor nodes including one or more constrained sensor nodes for sensing physical conditions, and a gateway to provide network connections for the constrained sensor nodes. The system also includes a range extender for connecting the one or more constrained sensor nodes to the gateway, with the range extender including first and second radios and corresponding processors to wirelessly communicate with the gateway and constrained nodes.
Abstract:
A networked system for managing a physical intrusion detection/alarm includes a network of end nodes, e.g., sensor nodes including one or more constrained sensor nodes for sensing physical conditions, and a gateway to provide network connections for the constrained sensor nodes. The system also includes a range extender for connecting the one or more constrained sensor nodes to the gateway, with the range extender including first and second radios and corresponding processors to wirelessly communicate with the gateway and constrained nodes.
Abstract:
Disclosed are techniques to authenticate tags passing through detection regions against an access control list, receive data that identifies a number of people passing through or within the detection regions, compare the number people identified by the received data with the number of tags identified by the system, and cause an alarm to be asserted when a discrepancy is detected in the number people identified with the number of tags in a detection region with personnel within the detection region.
Abstract:
Systems (100) and methods (1400) for verifying a detachment of a security tag (108) from an article. The methods comprise: producing by a detaching unit (106) a first signal at a first frequency and a second signal at a second frequency when the security tag is in proximity thereto; generating, by a non-linear electrical circuit (504) of the security tag, a third signal from the first and second signals applied thereto; ceasing generation of the third signal by the non-linear electrical circuit when at least a first portion (306) of the security tag is moved a certain distance from the detaching unit; and determining by the detaching unit that the first portion of the security tag has been decoupled from a second portion (318) of the security tag when the third signal is no longer being generated by the non-linear electrical circuit.
Abstract:
A product information system including a server having an item database that stores at least one item identifier and corresponding item data for at least one item. Also, the item database is associated with a predetermined vendor. The server also includes a receiver that receives a message including tag data captured from a tag by a portable wireless device. The tag data includes an item identifier. Also, the server includes a processor that operates, in response to the received message, to select item data from the item database that corresponds to the received item identifier. The server also includes a transmitter that transmits the selected item data to the portable wireless device.
Abstract:
A method for configuring a pattern recognition system begins by receiving object recognition data from at least one first local image processing system. The object recognition data is stored in at least one global database. Configuration data is determined for a second local image processing system based at least in part upon the received object recognition data from the at least one first image processing system, and then transmitted to the second local image processing system.
Abstract:
Systems (100) and methods (200) for dynamically managing Functional Configurations ("FCs") of network nodes (104, 134-138). The methods involve performing operations by a First End Node ("FEN") in accordance with a first FC. FEN (104) has a first Software Module ("SM") stored thereon specifying the first FC. The first SM (122) comprises a total set of codes/functions which determine how a network node is to behave. The first EN detects a trigger event for triggering a transition from the first FC to a second FC. In response to the trigger event, the FEN automatically and dynamically obtains, from a remote network node (134, 136, 138 or 144), a second SM (124 or 126) that is different than the first SM. The first SM (stored on FEN) is then replaced with the second SM. The FEN executes the second SM such that it operates in accordance with the second FC.