Abstract in simplified Chinese:本发明提供用于奈米导线对准及沉积的方法及系统。充能(例如交流电场)系被使用以对准及将奈米导线与电极相关联。借由调制该充能,该等奈米导线系耦接至该等电极,使其在后续清洗及干燥步骤期间保持在原位。本发明亦提供用于将奈米导线从一基板转移至另一基板以制备各种设备基板的方法。本发明亦提供用于监视及控制沉积于特定电极对之奈米导线的数量之方法,以及用于在溶液中操作奈米导线之方法。
Abstract:
A vehicle suspension system in which a computer controls damping and spring forces to optimize ride and handling characteristics under a wide range of driving conditions. A controllable shock absorber connected between the wheel and frame of the vehicle includes a hydraulic sensor which provides signals to the computer which are representative of the position of the piston within the shock absorber. The computer utilizes these position signals to control compression and rebound hydraulic pressure regulators by continuously computing, utilizing programmed algorithms, compression and rebound damping forces that will yield the desired ride and handling characteristics. An air spring may be connected with the shock absorber for compression and rebound along the same axis. Pressure sensors and air pressure inlet and outlet valves are connected to the computer for adjusting the pressure within the air spring to provide the desired spring rate.
Abstract:
A vehicle suspension system in which a computer controls damping and spring forces to optimize ride and handling characteristics under a wide range of driving conditions. A combined shock absorber/air spring unit is connected between the wheel and frame of a vehicle. The shock absorber includes a hydraulic sensor which provides signals to the computer which are representative of the position of the piston within the shock absorber. The computer utilizes these signals to control compression and rebound hydraulic pressure regulators to produce preprogrammed compression and rebound damping forces that will yield the desires ride and handling. The air spring may be connected in series with the shock absorber for compression and rebound along the same axis. Pressure sensors and air pressure inlet and outlet valves are connected to the computer for adjusting the pressure within the air spring to provide the desired spring rate.
Abstract:
A vehicle suspension system in which a computer controls damping and spring forces to optimize ride and handling characteristics under a wide range of driving conditions. A controllable shock absorber connected between the wheel and frame of the vehicle includes a hydraulic sensor which provides signals to the computer which are representative of the position of the piston within the shock absorber. The computer utilizes these position signals to control compression and rebound hydraulic pressure regulators by continuously computing, utilizing programmed algorithms, compression and rebound damping forces that will yield the desired ride and handling characteristics. An air spring may be connected with the shock absorber for compression and rebound along the same axis. Pressure sensors and air pressure inlet and outlet valves are connected to the computer for adjusting the pressure within the air spring to provide the desired spring rate.
Abstract:
A vehicle suspension system in which a computer controls damping and spring forces to optimize ride and handling characteristics under a wide range of driving conditions. A combined shock absorber/air spring unit is connected between the wheel and frame of a vehicle. The shock absorber includes a hydraulic sensor which provides signals to the computer which are representative of the position of the piston within the shock absorber. The computer utilizes these signals to control compression and rebound hydraulic pressure regulators to produce preprogrammed compression and rebound damping forces that will yield the desires ride and handling. The air spring may be connected in series with the shock absorber for compression and rebound along the same axis. Pressure sensors and air pressure inlet and outlet valves are connected to the computer for adjusting the pressure within the air spring to provide the desired spring rate.
Abstract:
The present invention is directed to methods to produce, process, and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides a method for producing nanowires that includes providing a thin film of a catalyst material with varying thickness on a substrate, heating the substrate and thin film, such that the thin film disassociates at the relatively thinner regions and vapor depositing a semiconductor onto the substrate to produce nanowires. A method is also provided in which two or more thin films of different materials are overlayed over a substrate, selectively etching the first underlying thin film to create a plurality of islands of the second thin film that mask portions of the first thin film and expose other portions and growing nanowires on the first thin film. Additional methods for producing nanowires are provided.
Abstract:
Methods and systems for applying nanowires and electrical devices to surfaces are described. In a first aspect, at least one nanowire is provided proximate to an electrode pair. An electric field is generated by electrodes of the electrode pair to associate the at least one nanowire with the electrodes. The electrode pair is aligned with a region of the destination surface. The at least one nanowire is deposited from the electrode pair to the region. In another aspect, a plurality of electrical devices is provided proximate to an electrode pair. An electric field is generated by electrodes of the electrode pair to associate an electrical device of the plurality of electrical devices with the electrodes. The electrode pair is aligned with a region of the destination surface. The electrical device is deposited from the electrode pair to the region.