Abstract:
Disclosed are embodiments of a system, methods and mechanism for management and translation of mapping between logical sequencer addresses and physical or logical sequencers in a multi-sequencer multithreading system. A mapping manager may manage assignment and mapping of logical sequencer addresses or pages to actual sequencers or frames of the system. Rationing logic associated with the mapping manager may take into account sequencer attributes when such mapping is performed Relocation logic associated with the mapping manager may manage spill and fill of context information to/from a backing store when re-mapping actual sequencers. Sequencers may be allocated singly, or may be allocated as part of partitioned blocks. The mapping manager may also include translation logic that provides an identifier for the mapped sequencer each time a logical sequencer address is used in a user program. Other embodiments are also described and claimed.
Abstract:
A processor is disclosed and includes at least one core including a first core, and interrupt delay logic. The interrupt delay logic is to receive a first interrupt at a first time and delay the first interrupt from being processed by a first time delay that begins at the first time,unless the first interrupt is pending at a second time when a second interrupt is processed by the first core. If the first interrupt is pending at the second time,the interrupt delay logic is to indicate to the first core to begin to process the first interrupt prior to completion of the first time delay. Other embodiments are disclosed and claimed.
Abstract:
A method and apparatus for executing lock instructions speculatively in an out-of-order processor are disclosed. In one embodiment, a prediction is made whether a given lock instruction will actually be contended. If not, then the lock instruction may be treated as having a normal load micro-operation which may be speculatively executed. Monitor logic may look for indications that the lock instruction is actually contended. If no such indications are found, the speculative load micro-operation and other micro-operations corresponding to the lock instruction may retire. However, if such indications are in fact found, the lock instruction may be restarted, and the prediction mechanism may be updated.
Abstract:
In one embodiment, the present invention includes a processor having a core with decode logic to decode an instruction prescribing an identification of a location to be monitored and a timer value, and a timer coupled to the decode logic to perform a count with respect to the timer value. The processor may further include a power management unit coupled to the core to determine a type of a low power state based at least in part on the timer value and cause the processor to enter the low power state responsive to the determination. Other embodiments are described and claimed.
Abstract:
Disclosed are embodiments of a system, methods and mechanism for management and translation of mapping between logical sequencer addresses and physical or logical sequencers in a multi-sequencer multithreading system. A mapping manager may manage assignment and mapping of logical sequencer addresses or pages to actual sequencers or frames of the system. Rationing logic associated with the mapping manager may take into account sequencer attributes when such mapping is performed Relocation logic associated with the mapping manager may manage spill and fill of context information to/from a backing store when re-mapping actual sequencers. Sequencers may be allocated singly, or may be allocated as part of partitioned blocks. The mapping manager may also include translation logic that provides an identifier for the mapped sequencer each time a logical sequencer address is used in a user program. Other embodiments are also described and claimed.
Abstract:
Rescheduling multiple micro-operations in a processor using a replay queue. The processor comprises a replay queue to receive a plurality of instructions and an execution unit to execute the plurality of instructions. A scheduler is coupled between the replay queue and the execution unit. The scheduler speculatively schedules instructions for execution and dispatches each instruction to the execution unit. A checker is couple to the execution unit to determine whether each instruction has executed successfully. The checker is also coupled to the replay queue to communicate to the replay queue each instruction that has not executed successfully.
Abstract:
Rescheduling multiple micro-operations in a processor using a replay queue. The processor comprises a replay queue to receive a plurality of instructions and an execution unit to execute the plurality of instructions. A scheduler is coupled between the replay queue and the execution unit. The scheduler speculatively schedules instructions for execution and dispatches each instruction to the execution unit. A checker is couple to the execution unit to determine whether each instruction has executed successfully. The checker is also coupled to the replay queue to communicate to the replay queue each instruction that has not executed successfully.
Abstract:
A processor is disclosed and includes at least one core including a first core, and interrupt delay logic. The interrupt delay logic is to receive a first interrupt at a first time and delay the first interrupt from being processed by a first time delay that begins at the first time,unless the first interrupt is pending at a second time when a second interrupt is processed by the first core. If the first interrupt is pending at the second time,the interrupt delay logic is to indicate to the first core to begin to process the first interrupt prior to completion of the first time delay. Other embodiments are disclosed and claimed.
Abstract:
In one embodiment, the present invention includes a processor having a core with decode logic to decode an instruction prescribing an identification of a location to be monitored and a timer value, and a timer coupled to the decode logic to perform a count with respect to the timer value. The processor may further include a power management unit coupled to the core to determine a type of a low power state based at least in part on the timer value and cause the processor to enter the low power state responsive to the determination. Other embodiments are described and claimed.
Abstract:
Systems and methods of managing threads provide for supporting a plurality of logical threads with a plurality of simultaneous physical threads in which the number of logical threads may be greater than or less than the number of physical threads. In one approach, each of the plurality of logical threads is maintained in one of a wait state, an active state, a drain state, and a stall state. A state machine and hardware sequencer can be used to transition the logical threads between states based on triggering events and whether or not an interruptible point has been encountered in the logical threads. The logical threads are scheduled on the physical threads to meet, for example, priority, performance or fairness goals. It is also possible to specify the resources that are available to each logical thread in order to meet these and other, goals. In one example, a single. logical thread can speculatively use more than one physical thread, pending a selection of which physical thread should be committed.