Abstract:
An electrochromic system and method for controlling photochromic darkening of an electrochromic device, the system including an EC device, a control unit, a voltage detector, and a power supply. The EC device includes a working electrode, a counter electrode, and a solid-state polymer electrolyte disposed therebetween. The control unit is configured to control a sweep voltage applied between the working and counter electrodes, such that the sweep voltage is applied when an open circuit voltage (OCV) between the working and counter electrodes is less than a threshold voltage.
Abstract:
Methods of charging an electrochromic device includes post assembly charging using a sacrificial redox agent, lithium diffusion into an electrode from a lithium layer or salt bridge charging, or pre assembly charging using proton photoinjection into an electrode.
Abstract:
An electrochromic (EC) device includes a first substrate, a second substrate, a transparent first conductor disposed between the first and second substrates, a transparent second conductor disposed between the first and second substrates, a working electrode disposed between the first and second conductors, a counter electrode disposed between the working electrode and the second conductor, and an electrolyte disposed between the working and counter electrodes. At least one of the first or second conductors is a multipart conductor which includes a transparent first conductive film, a first contact strip extending lengthwise in a first direction which is perpendicular to a second direction, along a first side of the EC device, and first conductive lines extending from the first contact strip toward an opposing second side of the EC device. The multipart conductor has a lower effective sheet resistance in the second direction than in the first direction.
Abstract:
An electrochromic device and method, the device including a light transmissive first substrate, a working electrode disposed on the first substrate, a counter electrode, a solid state electrolyte layer disposed between the counter electrode and the working electrode, a light transmissive second substrate disposed on the counter electrode, and a Bragg reflector configured to selectively reflect UV radiation away from the working electrode.
Abstract:
An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.
Abstract:
A method of forming an electrochromic (EC) device includes forming a solid-state first electrolyte layer, after forming the solid-state first electrolyte layer, laminating the first solid- state first electrolyte layer between a transparent first substrate and a transparent second substrate such that a transparent first electrode is disposed between the first substrate and a first side of the solid-state first electrolyte layer, and a transparent second electrode is disposed between the second substrate and a second side of the solid-state first electrolyte layer, and applying a sealant to seal the solid-state first electrolyte layer between the first and second substrates and to form the EC device.
Abstract:
An electrochromic device includes a light transmissive first substrate, a working electrode disposed on the first substrate, a light transmissive second substrate facing the first substrate, a counter electrode disposed on the second substrate, and a lithium-rich anti-perovskite (LiRAP) material disposed between the first and second substrates. The LiRAP material includes an ionically conductive and electrically insulating LiRAP material.
Abstract:
An electrochromic system and method for controlling photochromic darkening of an electrochromic device, the system including an EC device, a control unit, a voltage detector, and a power supply. The EC device includes a working electrode, a counter electrode, a solid-state polymer electrolyte disposed therebetween, and an ionically conductive and electrically insulating protective layer disposed between the electrolyte and the working electrode. The control unit is configured to control a sweep voltage applied between the working and counter electrodes, such that the sweep voltage is applied when an open circuit voltage (OCV) between the working and counter electrodes is less than a threshold voltage.
Abstract:
An electrochromic device may include a working electrode that includes a high temperature stable material and nanoparticles of an active core material, a counter electrode, and an electrolyte deposited between the working electrode and the counter electrode. The high temperature stable material may prevent fusing of the nanoparticles of the active core material at temperatures up to 700° C. The high temperature stable material may include tantalum oxide. The high temperature stable material may form a spherical shell or a matrix around the nanoparticles of the active core material. A method of forming an electrochromic device may include depositing a working electrode onto a first substrate, in which the working electrode comprises a high temperature stable material and nanoparticles of an active core material, and heat tempering the working electrode and the first substrate.
Abstract:
An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.