Abstract:
A reduction catalyst having a first metal component comprising one of Co, Os, Fe, Re, Rh and Ru. The first metal component is present in the catalyst at from 0.5 percent to 20 percent, by weight. A second metal component differing from the first metal component present in the catalyst with the second metal component being selected from the group consisting of Fe, Mn, Ru, Os, Rh, Ir, Ni, Pd, Pt, Ag, Au, Zn, Co, Re, Cu, Pb, Cr, W, Mo, Sn, Nb, Cd, Te, V, Bi, Ga and Na. A hydrogenation catalyst comprising one or both of Ni and Co and one or more elements selected from the group consisting of Mn, Fe, Ag, Au, Mo and Rh.
Abstract:
Chemical production processes are provided that include exposing a reactant composition to a catalyst composition to form a product composition, with the reactant composition including a multihydric alcohol compound and the catalyst composition being effective to dehydrate at least a portion of the multihydric alcohol compound. Embodiments of the process provide that the reactant composition is exposed to the catalyst composition for less than about 0.25 seconds and/or that the catalyst is maintained at a temperature of from about 2800C to about 3200C. Processes utilizing a reactant composition including a multihydric alcohol compound and an inert compound are also provided.
Abstract:
Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.
Abstract:
A process is disclosed for conversion of ammonium salts of β-hydroxy carbonyl compounds forming useful conversion products including, e.g., α, β-unsaturated carbonyl compounds and/or ammonium salts of α, β-unsaturated carbonyl compounds recovered at a high molar yield. Conversion products find use, e.g., as feedstock and/or end-use chemicals.
Abstract:
The invention includes a method of dehydration of a sugar using a dehydration catalyst and a co-catalyst within a reactor. A sugar is introduced and H 2 is flowed through the reactor at a pressure of less than or equal to about 300 psig to convert at least some of the sugar into an anhydrosugar product. The invention includes a process for producing isosorbide. A starting material comprising sorbitol is flowed into a reactor. H 2 is counter flowed through the reactor. The starting material is exposed to a catalyst in the presence of a co- catalyst which comprises at least one metal. The exposing is conducted at a hydrogen pressure of less than or equal to 300 psig within the reactor and the hydrogen removes at least some of any water present during the exposing and inhibits formation of colored byproducts.
Abstract translation:本发明包括使用反应器内的脱水催化剂和助催化剂使糖脱水的方法。 引入糖并且H 2 O 2以小于或等于约300psig的压力流过反应器,以将至少一些糖转化为脱水糖产物。 本发明包括一种生产异山梨醇的方法。 将含有山梨糖醇的原料流入反应器。 H 2反向流过反应器。 原料在包含至少一种金属的助催化剂存在下暴露于催化剂。 暴露在反应器内以小于或等于300psig的氢气压力进行,并且氢去除暴露期间存在的任何水中的至少一些并且抑制着色副产物的形成。
Abstract:
The invention includes a method of dehydration of a sugar using a dehydration catalyst and a co-catalyst within a reactor. A sugar is introduced and H 2 is flowed through the reactor at a pressure of less than or equal to about 300 psig to convert at least some of the sugar into an anhydrosugar product. The invention includes a process for producing isosorbide. A starting material comprising sorbitol is flowed into a reactor. H 2 is counter flowed through the reactor. The starting material is exposed to a catalyst in the presence of a co- catalyst which comprises at least one metal. The exposing is conducted at a hydrogen pressure of less than or equal to 300 psig within the reactor and the hydrogen removes at least some of any water present during the exposing and inhibits formation of colored byproducts.
Abstract translation:本发明包括使用反应器内的脱水催化剂和助催化剂使糖脱水的方法。 引入糖,并且H 2 O 2以小于或等于约300psig的压力流过反应器,以将至少一些糖转化为脱水糖产物。 本发明包括制备异山梨醇的方法。 将含有山梨醇的原料流入反应器。 H 2反向流过反应器。 在包含至少一种金属的助催化剂的存在下,将原料暴露于催化剂。 暴露在反应器内在小于或等于300psig的氢气压力下进行,并且氢去除暴露期间存在的任何水中的至少一些,并且抑制着色副产物的形成。
Abstract:
A process and apparatus are disclosed for conversion of β-hydroxy carbonyl compounds forming useful conversion products including, e.g., acrylic acid [CAS No. 79-10-7], acrylates, and acrylamide [CAS No. 79-06-01]. Conversion products find use, e.g., as feedstock and/or end-use chemicals.
Abstract:
The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.
Abstract:
Hydrogenolysis processes are provided that can include providing a hydrogenolysis reactor having a catalyst therein. The catalyst can be exposed to a reducing agent in the absence of polyhydric alcohol compound while maintaining a temperature of the catalyst above 290°C. Hydrogenolysis processes can also include providing a passivated catalyst to within a reactor and exposing the catalyst to a reducing atmosphere while maintaining the catalyst at a temperature less than 210°C. Hydrogenolysis catalyst preparation methods are provided that can include exposing the catalyst to a first reducing atmosphere while maintaining the catalyst at a first temperature to reduce at least a portion of the catalyst. The method can also include passivating at least the portion of the catalyst and depassivating the portion of the catalyst in the presence of a second reducing atmosphere while maintaining the portion of the catalyst at a second temperature less than the first temperature.
Abstract:
The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkyating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Amonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100 °C to about 400 °C to produce N-methyl succinimide which is purified and hydrogenated to form NMP.