Abstract:
A vehicle test system includes a free-wheeling automobile wheel including a rim defining a rim passage, and a bearing that extends through the rim passage such that the bearing is outside the rim to support the free-wheeling automobile wheel and retracts through the rim passage such that the bearing is inside the rim.
Abstract:
A special-purpose cuvette assembly with features that create a small, restricted volume to minimize bulk movements of liquid and minimize backscattering-induced broadening of light. The special-purpose cuvette assembly enables recording of Brownian movements of nanoparticles in a liquid when it is placed in a suitable optical device comprising a light sheet and an optical microscope attached to a video camera that is oriented in a direction perpendicular to the light sheet plane.
Abstract:
A monitoring system configured to receive an on-line sample associated with a process includes a sample chamber positioned to receive the on-line sample and a detector positioned to selectively receive and detect multiple wavelengths of light transmitted through the sample during an absorbance measurement, and emitted by the sample during a fluorescence measurement in response to illumination by each of the at least one excitation wavelength. An optical fiber couples light transmitted through the sample and directs the transmitted light to the multi-channel detector during the absorbance measurement. Optics direct light emitted by the sample during the fluorescence measurement to the detector without passing through any optical fiber. A computer in communication with the detector is configured to correct the fluorescence measurement using the absorbance measurement and determine a sample parameter based on the fluorescence and absorbance measurements of the on-line sample.
Abstract:
A system or method for analyzing a sample include an input light source, a double subtractive monochromator positioned to receive light from the input light source and to sequentially illuminate the sample with each of a plurality of wavelengths, a multi-channel fluorescence detector positioned to receive and substantially simultaneously detect multiple wavelengths of light emitted by the sample for each of the plurality of excitation wavelengths, an absorption detector positioned to receive and detect light passing through the sample, and a computer in communication with the monochromator, the fluorescence detector, and the absorption detector, the computer controlling the monochromator to sequentially illuminate the sample with each of the plurality of wavelengths while measuring absorption and fluorescence of the sample based on signals received from the fluorescence and absorption detectors
Abstract:
The disclosure provides for a novel system for generating a high dynamic range video of a colloid under investigation, and a novel optical chopper that can rapidly change the intensity of light incident on a colloid under investigation. These novel devices help record images of various sizes of nanoparticles that scatter light with very different efficiencies (effective cross- sections), typically orders of magnitude different.
Abstract:
A test method for a vehicle powertrain includes, during a first test of a first vehicle or a portion of a first vehicle on a dynamometer, coordinatingly controlling (i) an accelerator pedal, an accelerator pedal signal, a fuel injector, a manifold pressure, a motor controller, or a throttle valve according to a load schedule and (ii) the dynamometer according to a speed schedule such that the dynamometer applies dynamic torque that causes a powertrain of the first vehicle or portion of the first vehicle to produce dynamic powertrain torque. The test method also includes recording values defining a history of the dynamic torque, and during a second test of the first vehicle or portion of the first vehicle on the dynamometer or another dynamometer, or during a second test of a second vehicle or a portion of a second vehicle on the dynamometer or another dynamometer, coordinatingly controlling (iii) an accelerator pedal, an accelerator pedal signal, a fuel injector, a manifold pressure, a motor controller, or a throttle valve according to the values defining the history of the dynamic torque and (iv) the dynamometer or the another dynamometer according to the speed schedule such that the dynamometer or the another dynamometer applies dynamic torque that causes a powertrain of the first vehicle or portion of the first vehicle or a powertrain of the second vehicle or portion of the second vehicle to reproduce the dynamic powertrain torque.
Abstract:
An optical instrument for spectroscopy applications includes a compact arrangement having a three-dimensional folded optical path. A plate configured as an optical reference plane is secured to a housing and is configured to secure optical components above or below the plate. A modular light source module may be secured within the housing without fasteners. A monochromator and spectrometer are secured below the plate. Mirrors disposed above the plate are configured to direct light from the monochromator passing through a first opening in the plate through a sample disposed above the plate, and to direct light from the sample through a second opening in the plate to the spectrometer. A controller is configured for communication with the monochromator and the spectrometer. The controller may control an entrance slit actuator for the spectrometer and positioning of an aperture upstream of the spectrometer to adjust resolution and throughput.