Abstract:
One aspect of the invention provides a system, apparatus and method that allow a wireless communication device to intelligently search for and select a communication cell based on a system identifier (SID) and network identifier (NID) order of preference rather than just pilot signal strength. Generally, a mobile device scans a frequency channel associated with the highest preferred SID/NID for pilot signals at different PN offsets. The cell associated with the strongest pilot signal detected is queried to determine whether it belongs to the SID/NID sought. If the selected PN offset belongs to a cell associated with the SID/NID sought then it is used for communications. Otherwise, the SID/NID identification process is repeated for the next strongest PN offset detected on the same frequency channel. If no pilot signals meeting these criteria are found in the frequency channel, the next highest preferred SID/NID is selected and the process is repeated.
Abstract:
One aspect of the invention provides a system, apparatus and method that allow a wireless communication device to intelligently search for and select a communication cell based on a system identifier (SID) and network identifier (NID) order of preference rather than just pilot signal strength. Generally, a mobile device scans a frequency channel associated with the highest preferred SID/NID for pilot signals at different PN offsets. The cell associated with the strongest pilot signal detected is queried to determine whether it belongs to the SID/NID sought. If the selected PN offset belongs to a cell associated with the SID/NID sought then it is used for communications. Otherwise, the SID/NID identification process is repeated for the next strongest PN offset detected on the same frequency channel. If no pilot signals meeting these criteria are found in the frequency channel, the next highest preferred SID/NID is selected and the process is repeated.
Abstract:
CDMA code channels are acquired using a crystal oscillator that is not temperature compensated and that generates a tuning signal with relatively large frequency error (e.g., +/-5 ppm). Channel acquisition is first attempted at no offset from a start frequency that is obtained by fitting an ideal temperature/frequency error curve to available actual data points. Following unsuccessful pilot acquisition, the offset frequency is stepped in a "spiral" manner, and pilot acquisition is retried. When the pilot and synchronization channels are successfully acquired, but the system identification is unexpected, an adjacent channel image has been acquired, and the offset frequency is bumped by a large step (e.g., 15 kHz). Pilot acquisition is retried using spiral stepping. The crystal oscillator is calibrated after each successful acquisition of the pilot, synchronization and paging channels by retaining a data point in a frequency adjustment table for the temperature at which frequency acquisition was successful.