Abstract:
Provided is a system for controlling photovoltaic strings to perform Domino-type automatic snow melting, including a controller, M photovoltaic strings and a photovoltaic power supply control module; the 1st to (k−1)th photovoltaic strings supply power to the kth photovoltaic string, in response to the kth photovoltaic string being in a load mode, 2≤k≤M. The M photovoltaic strings are correspondingly connected to M photovoltaic interfaces of the photovoltaic power supply control module; the controller is connected to the photovoltaic power supply control module, and is configured to control the working state of the photovoltaic power supply control module.
Abstract:
The application proposes a distributed solar energy concentrating and splitting utilization system, comprising N concentrating and splitting optical modules, each of the concentrating and splitting modules comprising of a condensing mechanism, a splitting mechanism and a photovoltaic power generating device, wherein the splitting mechanism is located at the spotlight. The light receiving surface of the light condensing mechanism and the light receiving surface of the light splitting mechanism are oppositely arranged. The light splitting film is arranged on the light receiving surface of the light splitting mechanism, and a light transmitting hole is arranged on the light condensing mechanism for collecting sunlight and irradiating the light splitting mechanism. The light splitting mechanism is used to receive the sunlight condensed by the light converging mechanism and splitting light through the light splitting film, and the light transmitted through the light splitting mechanism is irradiated to the photovoltaic power generating device for photovoltaic power generation. The reflected light of the mechanism passes through the light transmission hole of the condenser mechanism. In the application, photovoltaic power generation is achieved through optical concentrating and spectroscopic methods and the basic requirements of plant lighting are satisfied, so that solar energy can be efficiently and comprehensively utilized.
Abstract:
This disclosure provides high-efficiency and low-energy-consumption synthetic methods of a series of phosphorus-nitrogen-based intumescent flame retardants and the use thereof in paint flame retarding. 1 part by weight of a phosphorization agent and 0.5-4.0 parts by weight of a nitrogen-containing foaming agent are uniformly mixed and stirred at room temperature, and an amount of water is further added to emit heat and initiate reaction. 0.5-3.0 parts by weight of a charring agent and 0.5-4.0 parts by weight of a hydroxy-containing polyfuctional crosslinking agent are then added, and reacted with stirring. An amine compound is finally added for neutralization until pH value is 5-8, and solid liquid separation is performed. The solid portion is dried to obtain a main body portion of a phosphorus-nitrogen-based intumescent flame retardant. The resultant filtrate is diluted with ⅓-⅔ volume of water, and a flame retardant product is obtained. This flame retardant product is mainly used in the flame retarding of paper and cotton fabrics. The main body and different proportions of other nitrogen-containing foaming agents and charring agents are uniformly mixed and pulverized into nano- and micro-scale, and a phosphorus-nitrogen-based intumescent flame retardant is obtained. The nano- and micro-scale phosphorus-nitrogen intumescent flame retardant is mixed into a paint at a weight ratio of 15-30%, to obtain a flame-retardant paint which is capable of maintaining mechanical and physical properties of the paint. The phosphorus-nitrogen-based intumescent flame retardant of this disclosure is an intumescent flame retardant having a synergistic effect of phosphorus and nitrogen.
Abstract:
This disclosure provides high-efficiency and low-energy-consumption synthetic methods of a series of phosphorus-nitrogen-based intumescent flame retardants and the use thereof in paint flame retarding. 1 part by weight of a phosphorization agent and 0.5-4.0 parts by weight of a nitrogen-containing foaming agent are uniformly mixed and stirred at room temperature, and an amount of water is further added to emit heat and initiate reaction. 0.5-3.0 parts by weight of a charring agent and 0.5-4.0 parts by weight of a hydroxy-containing polyfuctional crosslinking agent are then added, and reacted with stirring. An amine compound is finally added for neutralization until pH value is 5-8, and solid liquid separation is performed. The solid portion is dried to obtain a main body portion of a phosphorus-nitrogen-based intumescent flame retardant. The resultant filtrate is diluted with 1/3-2/3 volume of water, and a flame retardant product is obtained. This flame retardant product is mainly used in the flame retarding of paper and cotton fabrics. The main body and different proportions of other nitrogen-containing foaming agents and charring agents are uniformly mixed and pulverized into nano- and micro-scale, and a phosphorus-nitrogen-based intumescent flame retardant is obtained. The nano- and micro-scale phosphorus-nitrogen intumescent flame retardant is mixed into a paint at a weight ratio of 15-30%, to obtain a flame-retardant paint which is capable of maintaining mechanical and physical properties of the paint. The phosphorus-nitrogen-based intumescent flame retardant of this disclosure is an intumescent flame retardant having a synergistic effect of phosphorus and nitrogen.