Abstract:
A system for estimation of exhaust gas temperature for internal combustion engine at low operating temperatures allows determination of when use of exhaust gas temperature sensor measurements is allowable for engine diagnostic. One approach implements a physical model of pressure and temperature drops across a dual stage waste-gated turbo-charger along with modifiers based on current operating conditions to estimate the temperature in the exhaust manifold. Another models combustion to estimate the temperature in the exhaust manifold.
Abstract:
A method of setting actuator position of a variable geometry turbine linked to drive a compressor for a compression ignition engine using exhaust gas recirculation. The method includes detecting an engine transient event; determining current mass air flow through the compressor and exhaust temperature; resetting variable geometry turbine position to maximize mass air flow through the compressor; adding the maximum allowable quantity of fuel; determining exhaust temperature increase; adjusting exhaust pressure to allow an increase in mass air flow and exhaust temperature; and returning to the resetting step until a limit is reached.
Abstract:
A method for coordinating control of exhaust gas recirculation (18) in a turbocharged internal combustion engine (10) with control of engine boost. When actual boost deviates from a desired boost set-point developed by a boost control strategy (32), such as during a sudden acceleration or deceleration, the EGR control strategy (34) provides a prompt adjustment of exhaust gas recirculation (EGR) seeking to null out the boost disparity.
Abstract:
An engine control system (28) causes combustion chambers (20) to be fueled during an engine cycle by a main injection (38) ending no later than substantially at the TDC between compression and expansion strokes of the cycle without any further injection of fuel during the expansion stroke, and then during the exhaust stroke of the cycle, by a post-injection (40) for elevating the temperature of the gases into a regeneration temperature range for regenerating a diesel particulate filter (36).
Abstract:
A system and method for initiation and control of passive regeneration (38) of a diesel particulate filter (34), and the integration of that regeneration strategy with an active regeneration strategy (36) and a strategy (40, 40A) for inhibiting passive regeneration. Passive regeneration can be initiated by driver actuation of an instrument panel device, such as a switch, while the vehicle is parked with the engine idling provided that certain conditions confirming that the vehicle is parked and the engine is at proper temperature are satisfied. Regeneration is inhibited by driver actuation of another switch for a maximum amount of time that may be shorter, or even prevented if DPF loading is too high.
Abstract:
A method for operating an internal combustion engine (100) and exhaust system therefor includes the step of initiating a regeneration event in a diesel particulate filter (DPF 109) (401). A first oxygen concentration (213) of a gas upstream of the DPF 109, and a second oxygen concentration (215) of the gas downstream of the DPF 109 are sensed (403) to infer a rate of combustion of material in the DPF (405) based on the difference between the first (213) and the second (215) oxygen concentrations. The rate of combustion is compared to a threshold value (409) and the regeneration event in the DPF 109 is terminated (411) if the rate of combustion is above the threshold.
Abstract:
An exhaust system (16) of a diesel engine (10) has a diesel particulate filter (18) for treating exhaust gas. When trapped soot has accumulated to an extent that may affect performance of the filter, an engine control system (12) forces combustion of trapped soot by increasing exhaust back-pressure using a control device (20) such as a back-pressure control valve or vanes of a variable geometry turbocharger.
Abstract:
A block casting (10) for an internal combustion engine and method of its manufacture provide reduced engine block size and weight, and/or increased engine displacement, through cylinder-forming walls (11, 21) that decrease in thickness from minimal explosion-resistant thicknesses (11a, 21a) at the combustion chamber ends (12a) of the cylinders to reduced thicknesses (11b, 21b) at their other ends.
Abstract:
A valve operator position is determined for an exhaust gas recirculation valve (117) for an internal combustion engine (101). The valve position may be adjusted (313) for transient engine speed conditions and/or adjusted (309) for transient engine load conditions. During high transient states, the EGR valve is closed more, to allow more air to reach the cylinders of the engine, thereby improving engine performance.
Abstract:
Notification of an air intake restriction is provided for an internal combustion engine (101). Readings from one or more air pressure sensors (117, 119) utilized with an internal combustion engine (101) are processed to determine whether an air intake restriction is present. A notification is provided, for example, by displaying (209) a message on a display (123) in a driver's station of a vehicle housing the engine. Various data, including detection of an air intake restriction, may be transmitted (215) for use by personnel, for example, to provide maintenance.