Abstract:
An improved method and apparatus for filtration includes an outer stationary body, an inner rotating body defining a gap with the outer body for receiving a fluid sample, the surface of one of the bodies defining the gap being a filter. The rotation of the inner body creates Taylor vortices which continuously displace occluded solute on the filter surface. The filter can be a membrane.
Abstract:
An improved method and apparatus for filtration includes an outer stationary body, an inner rotating body defining a gap with the outer body for receiving a fluid sample, the surface of one of the bodies defining the gap being a filter. The rotation of the inner body creates Taylor vortices which continuously displace occluded solute on the filter surface. The filter can be a membrane. The rotational speed and/or a driving force across the membrane may be varied to control the composition of the permeate.
Abstract:
An improved method and apparatus for filtration includes an outer stationary body, an inner rotating body defining a gap with the outer body for receiving a fluid sample, the surface of one of the bodies defining the gap being a filter. The rotation of the inner body creates Taylor vortices which continuously displace occluded solute on the filter surface. The filter can be a membrane. In one embodiment the device may be used to filter very small volumes of fluid such as are handled in clinical and other laboratories.