Abstract:
An integrated circuit apparatus comprises a semiconductor substrate having a plurality of devices formed thereon, one or more metallization layers to interconnect the plurality of devices, and a bond pad formed over the one or more metallization layers and electrically coupled to at least one of the metallization layers. A first passivation layer is formed over the bond pad and over the metallization layers and a redistribution interconnect formed on the passivation layer. A first via formed through the first passivation layer electrically couples the redistribution interconnect to the bond pad. A second passivation layer is formed on the redistribution interconnect to prevent thermomechanical degradation and improve electromigration performance. A dielectric layer is formed on the second passivation layer and a die-side bump is formed on the dielectric layer. A second via formed through the dielectric layer and through the second passivation layer electrically couples the die-side bump to the redistribution interconnect.
Abstract:
The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of source/drain contacts within non-planar transistors, wherein a titanium-containing contact interface may be used in the formation of the source/drain contact with a discreet titanium silicide formed between the titanium-containing interface and a silicon-containing source/drain structure.
Abstract:
An integrated circuit apparatus comprises a semiconductor substrate having a plurality of devices formed thereon, one or more metallization layers to interconnect the plurality of devices, and a bond pad formed over the one or more metallization layers and electrically coupled to at least one of the metallization layers. A first passivation layer is formed over the bond pad and over the metallization layers and a redistribution interconnect formed on the passivation layer. A first via formed through the first passivation layer electrically couples the redistribution interconnect to the bond pad. A second passivation layer is formed on the redistribution interconnect to prevent thermomechanical degradation and improve electromigration performance. A dielectric layer is formed on the second passivation layer and a die-side bump is formed on the dielectric layer. A second via formed through the dielectric layer and through the second passivation layer electrically couples the die-side bump to the redistribution interconnect.