Abstract:
A fiber optical parametric oscillator is formed using photonic crystal fibers, also known as microstructure fibers or holey fibers. The optical parametric oscillator includes only a few meters of microstructure fiber. In one embodiment, the microstructure fiber is disposed between a highly reflective mirror and a diffraction grating in a simple Fabry-Perot configuration wherein the diffraction grating is tuned to reflect a particular wavelength of the signal wave back to the microstructure fiber. In another embodiment, the microstructure fiber is disposed in a ring cavity and the parametric oscillator is synchronously pumped. The parametric oscillator may be implemented with free space optics or use all fiber optic components.
Abstract:
The present invention provides methods, systems, and apparatus of improved fiber-based optical parametric oscillators (FOPOs). These oscillators can be used in the creation of short pulsed laser radiation, which are useful in numerous applications, such as characterization of materials and molecules. A relationship between fiber length and performance is realized, where shorter lengths counterintuitively provide greater power and width of output bands. This relationship is used to develop improved FOPOs. For example, fibers of 10 cm or less may be used to obtain superior performance in terms of wavelength tunability (e.g. bandwidth of 200 nm and greater) and output power (e.g. pulse power of 1 nJ). Other realized relationships between length and wavelength position of output bands are also used to select the wavelength range output from the FOPO. The diameter of the fiber may be selected to provide positioning (e.g. a centering) of the range of attainable output wavelengths.
Abstract:
A technique for generating variable pulse delays uses one or more nonlinear-optical processes such as cross-phase modulation, cross-gain modulation, self-phase modulation, four-wave mixing or parametric mixing, combined with group-velocity dispersion. The delay is controllable by changing the wavelength and/or power of a control laser. The delay is generated by introducing a controllable wavelength shift to a pulse of light, propagating the pulse through a material or an optical component that generates a wavelength dependent time delay, and wavelength shifting again to return the pulse to its original wavelength.
Abstract:
The present invention provides methods, systems, and apparatus of improved fiber-based optical parametric oscillators (FOPOs). These oscillators can be used in the creation of short pulsed laser radiation, which are useful in numerous applications, such as characterization of materials and molecules. A relationship between fiber length and performance is realized, where shorter lengths counterintuitively provide greater power and width of output bands. This relationship is used to develop improved FOPOs. For example, fibers of 10 cm or less may be used to obtain superior performance in terms of wavelength tunability (e.g. bandwidth of 200 nm and greater) and output power (e.g. pulse power of 1 nJ). Other realized relationships between length and wavelength position of output bands are also used to select the wavelength range output from the FOPO. The diameter of the fiber may be selected to provide positioning (e.g. a centering) of the range of attainable output wavelengths.
Abstract:
A technique for generating variable pulse delays uses one or more nonlinear-optical processes such as cross-phase modulation, cross-gain modulation, self-phase modulation, four-wave mixing or parametric mixing, combined with group-velocity dispersion. The delay is controllable by changing the wavelength and/or power of a control laser. The delay is generated by introducing a controllable wavelength shift to a pulse of light, propagating the pulse through a material or an optical component that generates a wavelength dependent time delay, and wavelength shifting again to return the pulse to its original wavelength.
Abstract:
A source and/or method of generating quantum-correlated and/or entangled photon pairs using parametric fluorescence in a fiber Sagnac loop. The photon pairs are generated in the 1550 nm fiber-optic communication band and detected by a detection system including InGaAs/InP avalanche photodiodes operating in a gated Geiger mode. A generation rate>103 pairs/s is observed, a rate limited only by available detection electronics. The nonclassical nature of the photon correlations in the pairs is demonstrated. This source, given its spectral properties and robustness, is well suited for use in fiber-optic quantum communication and cryptography networks. The detection system also provides high rate of photon counting with negligible after pulsing and associated high quantum efficiency and also low dark count rate.