Abstract:
According to one embodiment of the present invention an electrolyte sheet includes a body of varied thickness, the electrolyte sheet having a textured surface with multiple protruding features. The protruding features form an undercut angle with respect to the normal of the electrolyte sheet, the undercut angle being more than 0 degrees and less than 15 degrees.
Abstract:
A method of forming a solid, dense, hermetic lithium-ion electrolyte membrane comprises combing an amorphous, glassy, or low melting temperature solid reactant with a refractory oxide reactant to form a mixture, casting the mixture to form a green body, and sintering the green body to form a solid membrane. The resulting electrolyte membranes can be incorporated into lithium-ion batteries.
Abstract:
According to one embodiment of the invention a fuel cell device array monolith comprises at least three planar electrolyte sheets having two sides. The electrolyte sheets are situated adjacent to one another. At least one of the electrolyte sheets is supporting a plurality of anodes situated on one side of the electrolyte sheet; and plurality of cathodes situated on the other side of the electrolyte sheet. The electrolyte sheets are arranged such that the electrolyte sheets with a plurality of cathodes and anodes is situated between the other electrolyte sheets. The at least three electrolyte sheets are joined together by sintered frit, with no metal frames or bipolar plates situated therebetween.
Abstract:
A method for making a thin, free-standing ceramic sheet may include drawing a carrier film proximate a casting head and across a casting bed of a tape caster at a rate from about 2 cm/min to about 500 cm/min. Depositing a thin film of ceramic slip less than about 150 μm on the carrier film with the casting head. The ceramic slip may comprises a ceramic powder with an ultimate crystallite size of less than about 10 μm dispersed in a fluid vehicle such that the ceramic slip has a ceramic solids fraction of greater than about 20 % by volume. The deposited ceramic slip may be dried on the carrier film thereby forming a green ceramic sheet on the carrier film. After the green ceramic sheet is dried, the green ceramic sheet may be sintered.
Abstract:
According to one embodiment of the present invention an electrolyte sheet includes a body of varied thickness, the electrolyte sheet having a textured surface with multiple protruding features. The protruding features form an undercut angle with respect to the normal of the electrolyte sheet, the undercut angle being more than 0 degrees and less than 15 degrees.
Abstract:
There is disclosed a polycrystalline lithium-ion conductive membrane for a lithium-air battery that comprises at least one surface, a polycrystalline lithium-ion conductive material comprising grain boundaries, and at least one modifying phase, wherein (a) the at least one modifying phase is incorporated into the grain boundaries to form a modified polycrystalline lithium-ion conductive material comprising modified grain boundaries, (b) the at least one modifying phase is incorporated into the at least one surface to form a modified surface, or both (a) and (b). Various lithium based batteries, including lithium ion, lithium-air, and lithium-water batteries are disclosed, as well as methods for modifying the polycrystalline lithium-ion conductive membrane to allow it to be used in such battery applications.
Abstract:
The disclosure relates to ceramic lithium ion electrolyte membranes and processes for forming them. The ceramic lithium electrolyte membrane may comprise at least one ablative edge. Exemplary processes for forming the ceramic lithium ion electrolyte membranes comprise fabricating a lithium ion electrolyte sheet and cutting at least one edge of the fabricated electrolyte sheet with an ablative laser.
Abstract:
A method for making a thin, free-standing ceramic sheet may include drawing a carrier film proximate a casting head and across a casting bed of a tape caster at a rate from about 2 cm/min to about 500 cm/min. Depositing a thin film of ceramic slip less than about 150 µm on the carrier film with the casting head. The ceramic slip may comprises a ceramic powder with an ultimate crystallite size of less than about 10 µm dispersed in a fluid vehicle such that the ceramic slip has a ceramic solids fraction of greater than about 20 % by volume. The deposited ceramic slip may be dried on the carrier film thereby forming a green ceramic sheet on the carrier film. After the green ceramic sheet is dried, the green ceramic sheet may be sintered.