Abstract:
A system for producing an auxiliary fuel stream containing a low concentration of sulfur compounds from a primary fuel stream includes a first separation stage to separate a portion of a primary fuel stream into a first vapor permeate stream and a first retentate stream, a first separation stage partial condenser connected to the first vapor permeate stream condensing a portion of the first vapor permeate stream into a first liquid stage stream and a first vapor stage stream, and a second separation stage partial condenser condensing a portion of the first vapor stage stream into a second liquid stage. The stream may then be processed through a sorbent bed to effectively remove the sulfur compounds.
Abstract:
A hydrogen generation system is disclosed that has a vaporization section receiving and vaporizing fuel along with water and passing the vapor to a reformer catalyst section heated by a combustor section which generates reformate gas and is fueled by off-gas from a H2 purification unit along with a combustion air source. The off-gas outlet feeds the combustor section in the reformer assembly to heat the catalyst section and the vaporization section. An H2 storage unit connected to the H2 purification unit pure H2 outlet receives the pure H2. The storage unit has an outlet selectively connectable to the reformer assembly process inlet during startup without the need for a spark igniter. The startup process includes generating heat in the combustor section of the reformer assembly by passing H2 from the H2 storage unit through the vaporization section, the reformer catalyst section, the H2 purification unit and through the off-gas connection to the combustor section, then introducing water and fuel through the vaporization section and reformer catalyst section to generate reformate gas when the system is warmed, passing the reformate gas through the H2 purification unit to the off-gas connection to the combustor section, and establishing a back pressure on the reformer catalyst section and vaporizer section to decrease the hydrogen flow from the H2 storage unit until the system is fully sustainable without addition of H2 from the H2 storage unit.
Abstract:
A system for producing an auxiliary fuel stream containing a low concentration of sulfur compounds from a primary fuel stream includes a first separation stage to separate a portion of a primary fuel stream into a first vapor permeate stream and a first retentate stream, a first separation stage partial condenser connected to the first vapor permeate stream condensing a portion of the first vapor permeate stream into a first liquid stage stream and a first vapor stage stream, and a second separation stage partial condenser condensing a portion of the first vapor stage stream into a second liquid stage. The first vapor permeate stream is preferable sent through a vapor phase reactive desulfurization catalyst reactor to condition any sulfur compounds present into species that can be easily separated from the fuel stream. The process includes isolating a first vapor permeate stream and a first retentate stream from a primary fuel stream by passing a portion of the primary fuel stream through a first membrane separation stage, condensing a portion of the first vapor permeate stream in a first separation stage partial condenser into a first liquid stage stream and a first vapor stage stream, and passing the first vapor stage stream through a desulfurization reactor. The stream may then be processed through a sorbent bed to effectively remove the sulfur compounds.
Abstract:
A system for producing an auxiliary fuel stream containing a low concentration of sulfur compounds from a primary fuel stream includes a first separation stage to separate a portion of a primary fuel stream into a first vapor permeate stream and a first retentate stream, a first separation stage partial condenser connected to the first vapor permeate stream condensing a portion of the first vapor permeate stream into a first liquid stage stream and a first vapor stage stream, and a second separation stage partial condenser condensing a portion of the first vapor stage stream into a second liquid stage. The first vapor permeate stream is preferable sent through a vapor phase reactive desulfurization catalyst reactor to condition any sulfur compounds present into species that can be easily separated from the fuel stream. The process includes isolating a first vapor permeate stream and a first retentate stream from a primary fuel stream by passing a portion of the primary fuel stream through a first membrane separation stage, condensing a portion of the first vapor permeate stream in a first separation stage partial condenser into a first liquid stage stream and a first vapor stage stream, and passing the first vapor stage stream through a desulfurization reactor. The stream may then be processed through a sorbent bed to effectively remove the sulfur compounds.
Abstract:
A process and system for separating a fuel stream containing a low concentration of sulfur compounds from a primary fuel stream is disclosed. The process includes isolating a stage-one permeate stream and a stage-one retentate stream from the primary fuel stream, evaporating the stage-one permeate stream at a vacuum, and isolating a stage-two permeate stream and a stage-two retentate stream from the stage-one permeate stream. The stage-two retentate stream is a fuel stream containing low concentrations of sulfur compounds. The system includes a fuel supply, a stage-one separator for separating a fuel stream into a stage-one permeate stream and a stage-one retentate stream, a stage-two separator, a first supply line connecting a portion of the fuel supply to the stage-one separator, and a second supply line connecting the stage-one separator permeate stream to the stage-two separator. The stage-two separator isolates the stage-one separator permeate stream into a stage-two permeate stream and a stage-two retentate stream.
Abstract:
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.
Abstract:
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.
Abstract:
An integrated heating system for adding heat to a feed fuel within a module by way of an integrated heating element within the body or casing of the module. The heat may be selectively added to maintain a selected temperature.
Abstract:
A hydrogen generation system is disclosed that includes an integrated steam reforming reactor. The reactor has an overall cylindrical shape, receives a reformate and separately receiving a combustion gas mixture. The reactor includes a plurality of reforming stages arranged in a stacked series of disc shaped stage configuration, wherein each reforming stage has a disc shaped combustion portion adjacent a disc shaped catalyst pack through which the reformate passes, wherein the reformate is directed axially between stages and radially within each stage; and the combustion mixture is directed radially between groups of stages and circumferentially within each stage.