Abstract:
The disclosure relates to an optical fiber including a core and a cladding having a core material and a cladding material, respectively, wherein the fiber is a non-linear microstructured optical fiber, the microstructured optical fiber being obtainable by a method including loading the core material and optionally the cladding material with hydrogen and/or deuterium whereby the lifetime of the fiber may be extended in high pulse applications.
Abstract:
A new deep blue extended super continuum light source is provided wherein said super continuum at least extends to a low wavelength border λlow below 480 nm comprising a pump source which operates at a at least one wavelength λpump and produces pump pulses of a duration (full width half maximum) longer than 0.1 picoseconds with a repetition rate higher than 1 MHz, and a peak power Ppeak, and a micro-structured optical transmission medium having at least one wavelength of zero dispersion λzero, and for the parameters for said pump source exhibiting a second order dispersion parameter β2, and a non-linear parameter γ arranged so that the optical transmission medium exhibits a modulation instability gain extending to wavelengths above a wavelength λhigh≥1300nm and a phase match between λlow and a wavelength λmatch≥λhigh, wherein the the pump is adapted to provide energy within the region of anomalous dispersion of the transmission medium.
Abstract:
The invention relates to an article comprising a length of an optical fibre and a package, the optical fibre comprising a fibre Bragg grating dispersed over a FBG-section of the length of the optical fibre, the package comprising a carrier with a carrier surface for supporting at least a supported part of the optical fibre including the FBG-section. The invention further relates to an apparatus comprising the article, to its use and to a method of manufacturing such an article. The object of the present invention is to seek to provide an optimized (e.g. elongate) package having a relatively low sensitivity to mechanical vibrations from the environment. This is achieved by providing that the carrier surface for supporting the optical fibre comprising a fibre Bragg grating is convex in a longitudinal direction of the optical fibre during use of the article. This has the advantage of providing a lowering of the influence of vibrations from acoustic sources (or other sources of mechanical vibration) in the environment compared to prior art solutions. In an embodiment, the carrier comprises two different materials, each adapted to provide a specific tuning of the wavelength selected by the fibre Bragg grating. The invention may e.g. be used for the fibre lasers for sensing, (low frequency/low phase noise fibre lasers) in wavelength tuneable fibre lasers, and in packaging of fibre lasers in general.
Abstract:
A method of temperature stabilizing an optical waveguide having positive thermal optical path length expansion, in particular a stable single polarization mode optical fiber distributed feed back laser or a distributed Bragg reflector optical fiber laser, comprising affixing optical waveguide to at least two points of a composite material having negative thermal expansion; said composite material comprising a resin matrix having embedded therein fibers having a negative thermal expansion coefficient, and optionally fibers having a positive thermal expansion coefficient. Further a method of packaging optical fiber lasers that acts to reduce frequency jitter and hence reduce the spectral linewidth of the laser through damping of thermal fluctuations and acoustic vibrations originating from the environment; said packaging method comprising encapsulating the fiber laser within a curable viscous substance such as silicone or other elastomer.
Abstract:
The invention relates to a fiber laser comprising a first reflector and a second reflector, said reflectors defining a cavity, said cavity comprising at least one gain medium and said cavity further comprises at least one optical switch comprising at least one input port and at least one output port. The incorporation of a switch into the cavity allows for greater flexibility in the operation of the fiber laser.
Abstract:
The invention relates to an article comprising a length of an optical fibre and a package, the optical fibre comprising a fibre Bragg grating dispersed over a FBG-section of the length of the optical fibre, the package comprising a carrier with a carrier surface for supporting at least a supported part of the optical fibre including the FBG-section. The invention further relates to an apparatus comprising the article, to its use and to a method of manufacturing such an article. The object of the present invention is to seek to provide an optimized (e.g. elongate) package having a relatively low sensitivity to mechanical vibrations from the environment. This is achieved by providing that the carrier surface for supporting the optical fibre comprising a fibre Bragg grating is convex in a longitudinal direction of the optical fibre during use of the article. This has the advantage of providing a lowering of the influence of vibrations from acoustic sources (or other sources of mechanical vibration) in the environment compared to prior art solutions. In an embodiment, the carrier comprises two different materials, each adapted to provide a specific tuning of the wavelength selected by the fibre Bragg grating. The invention may e.g. be used for the fibre lasers for sensing, (low frequency/low phase noise fibre lasers) in wavelength tuneable fibre lasers, and in packaging of fibre lasers in general.
Abstract:
The invention relates to a mode locked fiber laser system arranged to have a lasing bandwidth and having a linear cavity, said cavity comprising a gain medium, a saturable absorber having a saturation power, and filter having a spectral response, wherein said mode locked fiber laser system is arranged so that substantial CW mode locked operation is obtainable with less than 3 times the saturation fluence impinging on the saturable absorber.