Abstract:
A signal associated with multiple haptic effects is received (116), each haptic effect from the multiple haptic effects being associated with a time slot from multiple time slots (216). Each haptic effect from the multiple haptic effects is associated with an effect slot from multiple effect slots (204) at least partially based on the time slot associated with that haptic effect. An output signal (214) is sent for each effect slot from the multiple effect slots, when the associated haptic effect is scheduled for its time slot.
Abstract:
A signal associated with multiple haptic effects is received, each haptic effect from the multiple haptic effects being associated with a time slot from multiple time slots. Each haptic effect from the multiple haptic effects is associated with an effect slot from multiple effect slots at least partially based on the time slot associated with that haptic effect. An output signal is sent for each effect slot from the multiple effect slots, when the associated haptic effect is scheduled for its time slot.
Abstract:
Haptic information in a series of frames of a media transport stream is identified and time stamps corresponding thereto are determined in accordance with a master time code signal embedded in the media transport stream. Each media transport stream frame containing haptic information is subsequently assigned a time stamp so that it will be used to activate an actuator at a proper time responsive to the time stamp to generate a haptic effect in accordance with the haptic information.
Abstract:
Haptic information in a series of frames of a media transport stream is identified and time stamps corresponding thereto are determined in accordance with a master time code signal embedded in the media transport stream. Each media transport stream frame containing haptic information is subsequently assigned a time stamp so that it will be used to activate an actuator at a proper time responsive to the time stamp to generate a haptic effect in accordance with the haptic information.
Abstract:
A device has a user interface that generates a haptic effect in response to user inputs or gestures. In one embodiment, the device receives an indication that the user is scrolling through a list of elements and an indication that an element is selected. The device determines the scroll rate and generates a haptic effect that has a magnitude that is based on the scroll rate.
Abstract:
A haptic feedback system that includes a controller, a memory coupled to the controller, an actuator drive circuit coupled to the controller, and an actuator coupled to the actuator drive circuit. The memory stores at least one haptic effect that is executed by the controller in order to create a haptic effect.
Abstract:
Systems and methods for controlling a resonant device are described. One described method for braking an actuator includes generating a first actuator signal configured to drive the actuator, the first actuator signal having a first frequency approximately resonant to the actuator, and transmitting the first actuator signal to the actuator. The method also includes generating a second actuator signal, having a second frequency approximately 180 degrees out of phase to the first frequency, the second actuator signal configured to cause a braking force on the actuator, and transmitting the second actuator signal to the actuator.