Abstract:
The present invention provides for the use of D3 partial agonists for treating or inhibiting the restless leg syndrome (RLS) and neurodegenerative diseases, in particular D3 partial agonists/D2 antagonists.
Abstract:
The invention concerns a method of treating an alkaline granular carbonatable material which contains aluminium metal and which has in particular a pH of at least 10. The method comprises an oxidation step wherein at least a portion of said aluminium metal is oxidised by contact with moisture. The aluminium should be oxidised to avoid swelling problems when using the granular material as aggregate. In the method according to the invention this oxidation is accelerated by providing at least one oxidising agent in said moisture, which oxidising agent has a higher redox potential than the water contained in said moisture. The method further comprises a carbonation step wherein the granular carbonatable material is at least partially carbonated to lower the pH thereof. In this way the formation of etthngite, which may also release aluminium ions which causing further swelling problems, can be avoided in the granular material or any ettringite present therein can be destabilised.
Abstract:
The present invention relates to a method for recycling waste water from a stainless steel slag treatment process wherein stainless steel slag is brought into contact with water, in particular to neutralize the free lime contained therein, thereby producing said waste water. This waste water contains heavy metals, including at least chromium, and has a pH higher than or equal to 11. In accordance with the invention, it is used as production water for manufacturing mortar and/or concrete. In this way, the heavy metals, which are dissolved in the waste water and thus readily available, become bound in the newly formed cement phases so that they are prevented from leaching. Moreover, it has been found that the workability of the fresh mortar or concrete and also the quality of the final mortar or concrete materials is not negatively affected by the use of this alkaline waste water and that an accelerated setting could be achieved during the first hours.
Abstract:
The invention concerns a method of treating an alkaline granular carbonatable material which contains aluminium metal and which has in particular a pH of at least 10. The method comprises an oxidation step wherein at least a portion of said aluminium metal is oxidised by contact with moisture. The aluminium should be oxidised to avoid swelling problems when using the granular material as aggregate. In the method according to the invention this oxidation is accelerated by providing at least one oxidising agent in said moisture, which oxidising agent has a higher redox potential than the water contained in said moisture. The method further comprises a carbonation step wherein the granular carbonatable material is at least partially carbonated to lower the pH thereof. In this way the formation of etthngite, which may also release aluminium ions which causing further swelling problems, can be avoided in the granular material or any ettringite present therein can be destabilised.
Abstract:
Method simulating local prestack depth seismic migrated images from target models, without using either real or synthetic recorded data. The input is a background model and some surveys, with the possibility of defining some acquisition surfaces to describe any acquisition geometry of potential surveys. In addition, detailed target models are given, generated from different type of input, such as parameter grids, interpreted time- or depth- horizons with attributes, reservoir models, and other models .In the most efficient application of the invention, a point in the background model is chosen by the user and will act as a node for Green's functions calculation between the surveys/acquisition surfaces and that point. Green's functions can be calculated in many ways (classic ray tracing, Wavefront Construction, and Eikonal solvers are possible methods), the mandatory information being slowness vectors to form a sum vector called the scattering wavenumber. According to some survey choices, the scattering wavenumbers are extracted, with various sub-selections, sorting, re-ordering, and used to create filters in the scattering wavenumber domain. Amplitudes, pulses, scattering pattern, Fresnel-zone effects, and other effects can be included in the filters. The latter are then applied to each target model to give a simulated prestack local image in depth after some transformation, like Fast Fourier Transform, from the wavenumber domain to the space domain. For better accuracy, local images for neighboring Green's functions nodes can be merged to form a classic prestack depth migrated section. A variant of the present invention is to simulate seismic traces in the time domain. The inner core of the invention, with application of scattering wavenumbers to build filters to apply to target models, can be applied in other domains, such as Ground Penetrating Radar, and possibly acoustical and medical imaging.
Abstract:
Method simulating local prestack depth seismic migrated images from target models, without using either real or synthetic recorded data. The input is a background model and some surveys, with the possibility of defining some acquisition surfaces to describe any acquisition geometry of potential surveys. In addition, detailed target models are given, generated from different type of input, such as parameter grids, interpreted time- or depth- horizons with attributes, reservoir models, and other models .In the most efficient application of the invention, a point in the background model is chosen by the user and will act as a node for Green's functions calculation between the surveys/acquisition surfaces and that point. Green's functions can be calculated in many ways (classic ray tracing, Wavefront Construction, and Eikonal solvers are possible methods), the mandatory information being slowness vectors to form a sum vector called the scattering wavenumber. According to some survey choices, the scattering wavenumbers are extracted, with various sub-selections, sorting, re-ordering, and used to create filters in the scattering wavenumber domain. Amplitudes, pulses, scattering pattern, Fresnel-zone effects, and other effects can be included in the filters. The latter are then applied to each target model to give a simulated prestack local image in depth after some transformation, like Fast Fourier Transform, from the wavenumber domain to the space domain. For better accuracy, local images for neighboring Green's functions nodes can be merged to form a classic prestack depth migrated section. A variant of the present invention is to simulate seismic traces in the time domain. The inner core of the invention, with application of scattering wavenumbers to build filters to apply to target models, can be applied in other domains, such as Ground Penetrating Radar, and possibly acoustical and medical imaging.