Abstract:
The present invention relates to a rotary compressor comprising an electric motor part for supplying electric power and a compression mechanism part for compressing a refrigerant while first and second rotary members (130,140) rotate upon receipt of the electric power from the electric motor part, and more particularly to, a compressor which enables a compact design by forming a compression space within the compressor by a rotor of an electric motor part driving the compressor, maximizes compression efficiency by minimizing friction loss between rotating elements within the compressor, and has a structure capable of minimizing leakage of refrigerant within the compression space.
Abstract:
The present invention relates to a rotary compressor comprising an electric motor part (120) for supplying electric power and a compression mechanism part for compressing a refrigerant while first and second rotary members (130,140) rotate upon receipt of the electric power from the electric motor part, and more particularly to, a compressor which enables a compact design by forming a compression space within the compressor by a rotor of an electric motor part driving the compressor, maximizes compression efficiency by minimizing friction loss between rotating elements within the compressor, and has a structure capable of minimizing leakage of refrigerant within the compression space.
Abstract:
Methods for manufacturing coated confectionery products and compositions regarding same are provided. In an embodiment, the method comprises providing a confectionery, applying at least one coating to the confectionery to produce a coated confectionery, and applying infra-red radiant energy to the coated confectionery.
Abstract:
A compressor comprises: a hermetically sealed container; a stator fixedly installed within the hermetically sealed container; a first rotary member rotating, within the stator, around a first rotary shaft longitudinally extending concentrically with the center of the stator by a rotating electromagnetic field from the stator, and provided with first and second covers fixed to upper and lower parts and rotating integrally with each other; a second rotary member space for compressing a refrigerant in a compression space formed between the first and second rotary members while rotating, within the first rotary member, around the second rotary shaft extending through the first and second covers upon receipt of a rotational force from the first rotary member; a vane for transmitting the rotational force to the second rotary member from the first rotary member, and partitioning the compression space into a suction region for sicking the refrigerant and a compression region for compressing/discharging the refrigerant; and first and second bearings fixed to the inside of the hermetically sealed container, and rotatably supporting the first and second rotary members in an axial direction.
Abstract:
A compressor comprises: a hermetically sealed container; a stator fixedly installed within the hermetically sealed container; a first rotary member rotating, within the stator, around a first rotary shaft longitudinally extending concentrically with the center of the stator by a rotating electromagnetic field from the stator, and provided with first and second covers fixed to upper and lower parts and rotating integrally with each other; a second rotary member space for compressing a refrigerant in a compression space formed between the first and second rotary members while rotating, within the first rotary member, around the second rotary shaft extending through the first and second covers upon receipt of a rotational force from the first rotary member; a vane for transmitting the rotational force to the second rotary member from the first rotary member, and partitioning the compression space into a suction region for sicking the refrigerant and a compression region for compressing/discharging the refrigerant; and first and second bearings fixed to the inside of the hermetically sealed container, and rotatably supporting the first and second rotary members in an axial direction.
Abstract:
The present invention provides a compressor, comprising a stator (120); a cylinder type rotor (131 ) rotating within the stator (120) by a rotating electromagnetic field from the stator (120), with the rotor defining a compression chamber inside; a roller (142) rotating within the compression chamber of the cylinder type rotor (131 ) by a rotational force transferred from the rotor (131 ), with the roller (142) compressing refrigerant during rotation; a vane (146) dividing the compression chamber into a suction region where refrigerant is sucked in and a compression region where the refrigerant is compressed/discharged from, with the vane (143) transferring the rotational force from the cylinder type rotor (131 ) to the roller (142); an axis of rotation (141 ) integrally extended from the roller (142) in an axial direction; and a suction passage (141 a) sucking refrigerant into the compression chamber through the axis of rotation and the roller.
Abstract:
A compressor is provided having an accumulator that forms an accumulating chamber in an internal space of a shell of the compressor, reducing a size of the compressor and simplifying an assembly process. A stationary shaft having a refrigerant suction passage may be directly connected to the accumulator to prevent leakage of refrigerant. Further, a center of gravity of the accumulator may correspond to a center of gravity of the compressor to reduce vibration noise of the compressor caused by the accumulator. Furthermore, both ends of the stationary shaft may be supported by a frame to reduce compressor vibration without using a separate bearing. An installation area of the compressor including the accumulator may be minimized to enhance design flexibility of an outdoor device employing the compressor and minimize interference with other components, thereby facilitating installation of the outdoor device.
Abstract:
The present invention provides a compressor, comprising: a stator (220); a cylinder type rotor (230) rotating within the stator (220) by a rotating electromagnetic field from the stator (220), with the rotor defining a compression chamber inside; a roller (242) rotating within the compression chamber of the cylinder type rotor (230) by a rotational force transferred from the rotor, with the roller (242) compressing refrigerant during rotation; an axis of rotation (241 ) integrally formed with the roller (242) and protruding from one side of the roller (242) in an axial direction; a vane (243) dividing the compression chamber into a suction region where refrigerant is sucked in and a compression region where the refrigerant is compressed/discharged from, with the vane (243) transferring the rotational force from the cylinder type rotor (230) to the roller (242); and a shaft cover (233) and a cover (234) joined to the cylinder type rotor (230) in an axial direction and forming the compression chamber for compression of refrigeration therebetween, the shaft cover (233) including a suction port (233a) used for refrigerant suction, the cover receiving the axis of rotation therethrough.
Abstract:
The present invention relates to a rotary compressor comprising an electric motor part for supplying electric power and a compression mechanism part for compressing a refrigerant while first and second rotary members rotate upon receipt of the electric power from the electric motor part, and more particularly to, a compressor which enables a compact design by forming a compression spεce within the compressor by a rotor of an electric motor part driving the compressor, maximizes compression efficiency by minimizing friction loss between rotating elements within the compressor, and has a stricture capable of minimizing leakage of refrigerant within the compression space.
Abstract:
The present invention provides a compressor, comprising: a stator; a cylinder type rotor rotating within the stator by a rotating electromagnetic field from the stator, with the rotor defining a compression chamber inside; a roller rotating within the compression chamber of the cylinder type rotor by a rotational force transferred from the rotor, with the roller compressing refrigerant during rotation; an axis of rotation integrally formed with the roller and protruding from one side of the roller in an axial direction; a vane dividing the compression chamber into a suction region where refrigerant is sucked in and a compression region where the refrigerant is compressed/discharged from, with the vane transferring the rotational force from the cylinder type rotor to the roller; and a shaft cover and a cover joined to the cylinder type rotor in an axial direction and forming the compression chamber for compression of refrigeration therebetween, the shaft cover including a suction port used for refrigerant suction, the cover receiving the axis of rotation therethrough.