Abstract:
A spectrally-encoded label comprises a spectrally-selective optical element having a label spectral signature. The label spectral signature is determined according to a spectral-encoding scheme so as to represent predetermined label information within the spectral encoding scheme. The label emits output light in response to input light selected by the label spectral signature of the optical element. A spectrally-encoded label system further comprises an optical detector sensitive to the output light emitted from the label, and a decoder operatively coupled to the detector for extracting the label information according to the spectral encoding scheme, and may also include a light source providing the input light for illuminating the label.
Abstract:
A distributed optical structure comprises a set of diffractive elements. Individual diffractive element transfer functions collectively yield an overall transfer function between entrance and exit ports. Diffractive elements are defined relative to virtual contours and include diffracting regions) altered to diffract, reflect, and/or scatter incident optical fields (altered index, surface, etc). Element and/or overall set transfer functions (amplitude and/or phase) are determined by: longitudinal and/or angular displacement of diffracting regions) relative to a virtual contour (facet-displacement grayscale); longitudinal displacement of diffractive elements relative to a virtual contour (element-displacement grayscale); and/or virtual contours) lacking a diffractive element (proportional-linedensity gray scale). Optical elements may be configured: as planar or channel waveguides, with curvilinear diffracting segments; to support three-dimensional propagation with surface areal diffracting segments; as a diffraction grating, with grating groove or line segments.
Abstract:
An optical multiplexing device includes an optical element having at least one set of diffractive elements, and an optical reflector. The reflector routes, between first and second optical ports, that portion of an optical signal transmitted by the diffractive element set. The diffractive element set routes, between first and multiplexing optical ports, a portion of the optical signal that is diffracted by the diffractive element set. More complex optical multiplexing functionality(ies) may be achieved using additional sets of diffractive elements, in a common optical element (and possibly overlaid) or in separate optical elements with multiple reflectors. Separate multiplexing devices may be assembled with coupled ports for forming more complex devices. The respective portions of an optical signal transmitted by and reflected/diffracted from the diffractive element set typically differ spectrally. The portion reflected from the diffractive element set may comprise one or more channels of an optical WDM system.
Abstract:
An optical apparatus comprises an optical element having at least one set of diffractive elements and multiple channel optical waveguides. Diffractive elements of each set are distributed among diffractive element subsets corresponding to each of the multiple channel waveguides. Each diffractive element set routes, between a corresponding pair of optical ports, those corresponding portions of an optical signal propagating within the optical element that are received by multiple channel waveguides and back-diffracted within the receiving channel waveguides by corresponding diffractive element subsets. The channel optical waveguides are arranged so that optical signals propagate through regions of the optical element between the ports and the first ends of the channel waveguides. Relative spatial arrangement of the first ends of the channel waveguides and corresponding relative phase shifts imparted in the channel waveguides define at least in part a relative spatial arrangement of the corresponding pair of optical ports.