Abstract:
The present invention is directed to methods of and systems for adaptive networking that monitors a network resource of a network. The method monitors an application performance. The method categorizes a first subset of traffic of the network. The categories for the first subset include trusted, known to be bad, and suspect. The method determines an action for a second subset of traffic based on the category for the first subset of traffic. Some embodiments provide a system for adaptive networking that includes a first device and traffic that has a first subset and a second subset. The system also includes a first resource and a second resource for the transmission of the traffic. The first device receives the traffic and categorizes the traffic into the first and second subsets. The first device assigns the first subset to the first resource. Some embodiments provide a network device that includes an input for receiving incoming traffic, an output for sending outgoing traffic, a categorization module that categorizes incoming traffic, and a resource assignment module that assigns the categorized traffic for a particular resource. A traffic category for the device includes suspect traffic.
Abstract:
A system for the assessment of network performance criteria, and applying this criteria to the classification of network addresse s into appropriate ranges, using these ranges to consolidate performance measurements for the associated addresses, and applying these metrics toward the optimization of the network towards performance or policy objectives.
Abstract:
The present invention is directed to a system for and a method of selecting a combination of resources for transmitting data from a remote site to a destination site. The method comprises generating a list of combinations of resources at a regional site and transmitting the list to the remote site. Data is transmitted from the remote site to the regional site using each combination of resources and statistics for each transmission are stored. Metrics, based on the application at hand, are computed for each set of statistics corresponding to each transmission, and a preferred combination of resources is selected at the regional site based on the metrics. The regional site then transmits to the remote site information corresponding to the preferred combination of resources. The remote site is then configured to transmit data to the destination site using the selected combination of resources. Resources include links with a specified bandwidth, VPN and GRE tunnels, and routers configured to perform MPLS switching, type-of-service routing, and source routing.
Abstract:
The present invention is directed to a system for and a method of selecting a combination of resources for transmitting data from a remote site to a destination site. The method comprises generating a list of combinations of resources at a regional site and transmitting the list to the remote site. Data is transmitted from the remote site to the regional site using each combination of resources and statistics for each transmission are stored. Metrics, based on the application at hand, are computed for each set of statistics corresponding to each transmission, and a preferred combination of resources is selected at the regional site based on the metrics. The regional site then transmits to the remote site information corresponding to the preferred combination of resources. The remote site is then configured to transmit data to the destination site using the selected combination of resources. Resources include links with a specified bandwidth, VPN and GRE tunnels, and routers configured to perform MPLS switching, type-of-service routing, and source routing.
Abstract:
The present invention is directed to a method of and a system that monitors a network resource of a network and an application performance. The method categorizes a first subset of network traffic into trusted, known to be bad, and suspect categories. The method determines an action for a second subset of traffic based on the categorizing. Some embodiments provide a system for an adaptive networking having a first device and traffic that has a first subset and a second subset. The system also includes a first resource and a second resource for the transmission of the traffic. The first device receives the traffic and categorizes the traffic into the first and second subsets. The first device assigns the first subset to the first resource. Some embodiments provide a categorization module that categorizes incoming traffic, and a resource assignment module that assigns the categorized traffic for a particular resource. A traffic category for the device includes suspect traffic.
Abstract:
Systems and methods are described for supporting routing intelligence for evaluating routing paths based on performance measurements. The routing intelligence may include processes executed in a self-contained device. This device may control one or more edge routers, based on performance data from end users. In other embodiments, the routing intelligence device may be used solely to monitor one or more edge routers, producing reports but not effecting any changes to routing. Routing decisions may be injected to the edge routers via BGP updates. The devices may be stationed at the premises of a multihomed organization, such as an enterprise, ISP, government organization, university, or other organization supporting a sub-network coupled to an internetwork. In other embodiments, the routing intelligence comprises processes executed on a router.
Abstract:
Methods, computer code, and means are described that can control load in a network. In some applications, the monetary cost of operating the network can be reduced. Utilization of links in the network can be monitored. A degree of suboptimality with respect to some criteria can be assessed. In some instances, the criteria could be based at least partly one or more monetary billing structures of some subset of two or more links [Figure 8]. A subset of the forwarding decisions of one or more forwarding nodes in the network can be adjusted automatically, based at least partly on the assessing. The adjustment can attempt to reduce the degree of suboptimality.
Abstract:
Methods and apparatuses for obtaining delay, jitter, and loss statistics of a path between server and an end user coupled via an internetwork are described. The serve may comprise a web server in communication with the end user via the Internet. Statistics are obtained by analyzing the details of a TCP connection underlying an HTML transaction. Robust measurements of jitter, delay, and loss are ensured by maximizing traffic between the web server and the surfer in order to generate a robust sample of TCP connections. Content may be updated with one or more html link(s). This existing content may reside on a highly trafficked portal, such as a web portal, and may be encoded in a markup language, such as Hyper Text Markup Language (HTML). The Uniform Resource Locators (URLs) corresponding to the one or more links resolve to the server from which the statistics are to be measured. The actual content supplied by the server may be minimized, in order to preserve bandwidth.
Abstract:
Methods, computer code, and means are described that can control load in a network. In some applications, the monetary cost of operating the network can be reduced. Utilization of links in the network can be monitored. A degree of suboptimality with respect to some criteria can be assessed. In some instances, the criteria could be based at least partly one or more monetary billing structures of some subset of two or more links [Figure 8]. A subset of the forwarding decisions of one or more forwarding nodes in the network can be adjusted automatically, based at least partly on the assessing. The adjustment can attempt to reduce the degree of suboptimality.
Abstract:
Methods and apparatuses for communicating data within measurement traffic are described. Embodiments that send, receive and both send and receive are described. Some embodiments are described that compute statistics based at least partly on measurement traffic. Some embodiments are described that communicate computed statistics within measurement traffic. Some embodiments are described that rank and select paths based at least in part on computed statistics.