Abstract:
Systems and methods for aligning a transfer head assembly with a substrate are disclosed. In an embodiment a pivot mount is used for generating a feedback signal in a closed-loop motion control system. In an embodiment, the pivot mount includes a plurality of spring arms, with each spring arm including a switch-back along an axial length of the spring arm such that a pair of first and second lengths of the spring arm are immediately adjacent the switch-back and are parallel to each other. A first strain sensing element is located at the first length, and a second strain sensing element is located at the second length.
Abstract:
A display module and system applications including a display module are described. The display module may include a display substrate including a front surface, a back surface, and a display area on the front surface. A plurality of interconnects extend through the display substrate from the front surface to the back surface. An array of light emitting diodes (LEDs) are in the display area and electrically connected with the plurality of interconnects, and one or more driver circuits are on the back surface of the display substrate. Exemplary system applications include wearable, rollable, and foldable displays.
Abstract:
Light emitting devices and methods of integrating micro LED devices into light emitting device are described. In an embodiment a light emitting device includes a reflective bank structure within a bank layer, and a conductive line atop the bank layer and elevated above the reflective bank structure. A micro LED device is within the reflective bank structure and a passivation layer is over the bank layer and laterally around the micro LED device within the reflective bank structure. A portion of the micro LED device and a conductive line atop the bank layer protrude above a top surface of the passivation layer.
Abstract:
Systems and methods for transferring a micro device from a carrier substrate are disclosed. In an embodiment, a mass transfer tool includes an articulating transfer head assembly, a carrier substrate holder, and an actuator assembly to adjust a spatial relationship between the articulating transfer head assembly and the carrier substrate holder. The articulating transfer head assembly may include an electrostatic voltage source connection and a substrate supporting an array of electrostatic transfer heads.
Abstract:
A flexible display panel (103) and method of formation with a sacrificial release layer are described. The method of manufacturing a flexible display system includes forming a sacrificial layer on a carrier substrate (101). A flexible display substrate (105) is formed on the sacrificial layer, with a plurality of release openings (111) that extend through the flexible display substrate (105) to the sacrificial layer. An array of LEDs (106) and a plurality of microchips (108) are transferred onto the flexible display substrate (105) to form a flexible display panel (103). The sacrificial layer is selectively removed such that the flexible display panel (103) attaches to the carrier substrate (101) by a plurality of support posts. The flexible display panel (103) is removed from the carrier substrate (101) and is electrically coupled with display components to form a flexible display system.
Abstract:
Micro pick up arrays for transferring micro devices from a carrier substrate are disclosed. In an embodiment, a micro pick up array (104) includes a compliant contact (108) for delivering an operating voltage from a voltage source to an array of electrostatic transfer heads (114). The compliant contact is moveable relative to a base substrate (214) of the micro pick up array.
Abstract:
A light emitting device and method of manufacture are described. In an embodiment, the light emitting device includes a micro LED device bonded to a bottom electrode, a top electrode in electrical contact with the micro LED device, and a wavelength conversion layer around the micro LED device. The wavelength conversion layer includes phosphor particles. Exemplary phosphor particles include quantum dots that exhibit luminescence due to their size, or particles that exhibit luminescence due to their composition.
Abstract:
A display panel and method of manufacture are described. In an embodiment, a display substrate includes a pixel area and a non-pixel area. An array of subpixels and corresponding array of bottom electrodes are in the pixel area. An array of micro LED devices are bonded to the array of bottom electrodes. One or more top electrode layers are formed in electrical contact with the array of micro LED devices. In one embodiment a redundant pair of micro LED devices are bonded to the array of bottom electrodes. In one embodiment, the array of micro LED devices are imaged to detect irregularities.
Abstract:
A micro device transfer head array and method of forming a micro device transfer array from an SOI substrate are described. In an embodiment, the micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include a silicon interconnect and an array of silicon electrodes electrically connected with the silicon interconnect. Each silicon electrode includes a mesa structure protruding above the silicon interconnect. A dielectric layer covers a top surface of each mesa structure.
Abstract:
A method of fabricating and transferring a micro device and an array of micro devices to a receiving substrate are described. In an embodiment, a patterned sacrificial layer is utilized to form a self-aligned metallization stack and is utilized as an etch stop layer during etching of a p-n diode layer to form a plurality of micro p-n diodes.