Abstract:
PROBLEM TO BE SOLVED: To provide a preparation for enhancing efficiency of targeting of a nucleic acid to a liver cell and efficiency of intracellular uptake. SOLUTION: The preparation for liver delivery comprises a polyion complex formed from a nucleic acid and a cationized pullulan derivative. In the preparation, the molecular weight used is preferably 30,000-60,000 and a ratio of number of moles of an amino group in the catioized pullulan derivative to number of moles of a phosphoric acid group in the nucleic acid is preferably 3-7. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
In the present specification, degradation of a battery is suppressed in a hybrid vehicle having an EV mode in which the hybrid vehicle runs without using an engine and an HV mode in which the hybrid vehicle runs using both the engine and a motor. A controller of the hybrid vehicle is configured to limit a usage range of the battery in the EV mode with an execution request of the EV mode having been made by an information input from outside to the vehicle than in the EV mode with no execution request. The degradation of the battery is suppressed by limiting the usage range of the battery.
Abstract:
The SOC of a power storage device provided in an electrically powered vehicle is controlled not to fall out of a SOC control range. When a SOC estimate value reaches a control lower limit value during vehicle traveling, a power generating structure provided in the vehicle starts to charge the power storage device. In the case of low temperature and/or deterioration of the power storage device, i.e., in the case where decrease of performance of the power storage device is concerned, the control lower limit value is increased as compared with that in a normal state. As a result, decrease of driveability and decrease of startability of an engine in the hybrid vehicle, both otherwise caused by insufficient output electric power from the power storage device, can be avoided.
Abstract:
On a display, a running power determined in accordance with an accelerator position or the like is displayed. When the hybrid vehicle is controlled in a CS mode, the running power is displayed together with eco-acceleration power greater than a first engine starting power. When the hybrid vehicle is controlled in a CD mode, the running power is displayed together with a second engine starting power in place of the eco-acceleration power. The engine is stopped when the running power is smaller than the first engine starting threshold value in the CS mode. The engine is driven when the running power is equal to or greater than the first engine starting threshold value in the CS mode. The engine is stopped when the running power is smaller than a second engine starting threshold value in the CD mode. The engine is driven when the running power is equal to or greater than the second engine starting threshold value in the CD mode. The second engine starting threshold value is greater than the first engine starting threshold value.
Abstract:
Vehicle includes an engine, a first rotating electric machine and a control device controlling the rotational speed of the first rotating electric machine such that the rotational speed of the engine matches a target rotational speed. The control device calculates a torque command value of the first rotating electric machine based on an upper limit value of electric power discharged from a power storage device supplying electric power to the first rotating electric machine. The control device calculates the torque command of the first rotating electric machine based on a further restricted value of the upper limit value when a torque restricting condition including simultaneous operation of an accelerator pedal and brake pedal is met.
Abstract:
The invention relates to a control device of a hybrid system. The control device selectively performs first and second modes for concomitantly using an EV mode for operating the electric motor (12) with the engine operation being stopped and an HV mode for selectively operating the engine and stopping the engine operation with the electric motor being operated by switching the EV and HV modes according to a predetermined switching condition set such that a proportion of an engine operation time in the first mode is smaller than that in the second mode. When an actual acceleration pedal manipulation amount is smaller than a first manipulation amount, an amount of the hybrid system power increased according to the increasing of the actual acceleration pedal manipulation amount in the first mode is made larger than that in the second mode.
Abstract:
A hybrid vehicle for reducing a variation in accelerator position when an EV mode is switched to a HV mode is provided. A controller executes the following process during running in the EV mode. The controller sets an increase of the accelerator position from a first accelerator position to a switching accelerator position at which a switch to the HV mode is to be made as a first increase when an output of a motor has reached an output upper limit at the first accelerator position. The controller sets an increase of the accelerator position from a second accelerator position to the switching accelerator position as a second increase which is smaller than the first increase when the output of the motor has reached the output upper limit at the second accelerator position which is larger than the first accelerator position.