Abstract:
An accelerator (10) for accelerating a particle beam (12) includes a main body (70) having a plurality of electromagnetic cavities (16) coupled in series, and a first coupling body (21) having a first side cavity coupled to one of the electromagnetic cavities (16) through a first opening (22), and to another of the electromagnetic cavities (16) through a second opening (22), wherein the first opening and the second opening have different configurations. The accelerator further includes a pair of conductive capacitively coupled noses (24) secured to side walls of the first coupling body, wherein the pair of noses (24) have equal lengths.
Abstract:
A standing wave electron beam accelerator and x-ray source is described. The accelerator has a plurality of on-axis resonant cells having axial apertures electrically coupled to one another by on-axis coupling cells having axial apertures. The accelerator includes a buncher cavity defined in part by an apertured anode and a half cell. The buncher cavity is configured to receive electrons injected through said anode aperture and r.f. focus them into a beam which is projected along the axis through said apertures. An x-ray target is supported in spaced relationship to said accelerator by a support having a smaller diameter than the accelerator.
Abstract:
An accelerator for accelerating a particle beam includes a main body having a plurality of electromagnetic cavities coupled in series, and a first coupling body having a first side cavity coupled to one of the electromagnetic cavities through a first opening, and to another of the electromagnetic cavities through a second opening, wherein the first opening and the second opening have different configurations. The accelerator further includes a pair of conductive capacitively coupled noses secured to side walls of the first coupling body, wherein the pair of noses have equal lengths.
Abstract:
A standing wave electron beam accelerator and x-ray source is described. The accelerator has a plurality of on-axis resonant cells having axial apertures electrically coupled to one another by on-axis coupling cells having axial apertures. The accelerator includes a buncher cavity defined in part by an apertured anode and a half cell. The buncher cavity is configured to receive electrons injected through said anode aperture and r.f. focus them into a beam which is projected along the axis through said apertures. An x-ray target is supported in spaced relationship to said accelerator by a support having a smaller diameter than the accelerator.