Abstract:
PROBLEM TO BE SOLVED: To enable vehicle users to focus on a driving environment or have an emotional connection to the vehicle without sacrificing the convenience offered by a multitude of dashboard and center stack components.SOLUTION: A display system for a motor vehicle passenger compartment includes: at least one indicium visible to an operator of the vehicle and configured to indicate a vehicle operating condition; an indicia light configured to illuminate the indicia; a display device visible to an operator of the vehicle; and a controller, in communication with the indicia light and the display device, programmed to: operate the display device in a first mode in which the indicia light is activated to illuminate the indicia, and in response to a first control signal indicative of a change from the first mode to a second mode, reduce illumination of the indicia by the indicia light and control the display device to output information indicative of the vehicle operating condition.
Abstract:
Lane-level route planning includes obtaining lane-level information of a road, where the road includes a first lane and a second lane and the lane-level information includes first lane information related to the first lane and second lane information related to the second lane; converting the lane-level information to probabilities for a state transition function; receiving a destination; and obtaining a policy as a solution to a model that uses the state transition function.
Abstract:
Exception handing, such as of obstruction situations, by an autonomous vehicle (AV) is disclosed. A method includes identifying an exception situation; identifying a risk associated with autonomously resolving the exception situation; and in response to the risk exceeding a risk threshold, initiating a request for assistance from a tele-operator, and halting for the tele-operator to respond to the request; and receiving a response from the tele-operator.
Abstract:
A vehicle body structure having a side roof rail, a B-pillar and a bracket. The side roof rail has an inboard surface. The B-pillar has an upper end portion that overlays a portion of the inboard surface of the roof rail. The B-pillar extends downward from the roof rail. The bracket has a first portion and a second portion. The first portion is fixedly attached to the upper end portion of the B-pillar. The bracket further has a first rib and a second rib spaced apart from the first rib. The first rib and the second rib extend from the first portion of the bracket upward toward the second portion of the bracket. The first portion of the bracket further defines a slot located between the first rib and the second rib.
Abstract:
Distance and object based external notification system for automated hailing service is described. An autonomous vehicle (AV) can include a processor configured to execute instructions stored on a non-transitory computer readable medium to detect, based on sensor information, an object within the AV; determine that the object belongs to a recent occupant of the AV; and, in response to the determining that the object belongs to the recent occupant of the AV, select, based on a proximity of the recent occupant to the AV, a notification modality for sending a message to the recent occupant regarding the object; and send the message using the notification modality.
Abstract:
Autonomous vehicle operational management with visual saliency perception control may include operating a perception unit and an autonomous vehicle operational management controller. Operating the perception unit may include generating external object information based on image data received from image capture units of the vehicle and saliency information received from the autonomous vehicle operational management controller. Operating the autonomous vehicle operational management controller may include identifying a distinct vehicle operational scenario based on the external object information, instantiating a scenario-specific operational control evaluation module instance, receiving a candidate vehicle control action from a policy for the scenario-specific operational control evaluation module instance, and controlling the autonomous vehicle to traverse a portion of the vehicle transportation network in accordance with the candidate vehicle control action, wherein the portion of the vehicle transportation network includes the distinct vehicle operational scenario.
Abstract:
According to some implementations of the present disclosure, a method for controlling an autonomous vehicle is disclosed. The method includes traversing the transportation network in accordance with a route and receiving vehicle sensor data from one or more vehicle sensors of the autonomous vehicle. The method also includes determining that the autonomous vehicle has encountered an occlusion scenario based on the vehicle sensor data. In response to determining that the autonomous vehicle has encountered the occlusion scenario, the method includes transmitting a request for infrastructure data to an external resource via a communication network, receiving infrastructure data from the external resource, determining a control action for the autonomous vehicle to perform based on the infrastructure data and the vehicle sensor data, and controlling the autonomous vehicle based on the control action.
Abstract:
Autonomous vehicle operational management may include traversing, by an autonomous vehicle, a vehicle transportation network. Traversing the vehicle transportation network may include operating a scenario- specific operational control evaluation module instance, wherein the scenario-specific operational control evaluation module instance is an instance of a scenario- specific operational control evaluation module, wherein the scenario-specific operational control evaluation module implements a partially observable Markov decision process. Traversing the vehicle transportation network may include receiving a candidate vehicle control action from the scenario-specific operational control evaluation module instance, and traversing a portion of the vehicle transportation network based on the candidate vehicle control action.
Abstract:
Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.
Abstract:
A membrane electrode assembly for a fuel cell has a segmented membrane including a porous support having a surface area, the surface area divided into a first portion and a second portion. An alkaline segment is formed from the first portion of the porous support imbibed with an alkaline ionomer. An acid segment is formed from the second portion of the porous support imbibed with an acid ionomer. The alkaline segment is sized to provide a humidification amount to a feed gas passing through the acid segment.